Pearl J. Probabilistic reasoning in intelligent systems: Networks of plausible inference[C]. Networks of Plausible Inference. San Francisco: Morgan Kaufmann, 1988: 383-408.
[2]
张连文, 郭海鹏. 贝叶斯网引论[M]. 北京: 科学出版社, 2006: 31-74.
[3]
(Zhang L W, Guo H P. An introduction to Bayesian networks[M]. BeiJing: Science Press, 2006: 31-74.)
[4]
Zhang N L, Poole D. Exploiting causal independence in Bayesian network inference[J]. J of Artificial Intelligence Research, 1996, 5(7): 301-328.
(Zhang H Y, Wang L W, Chen Y X. Research progress of probabilistic graphical models: A survey[J]. J of Software, 2013, 24(11): 2476-2497.)
[7]
Heckerman D. Causal independence for knowledge acquisition and inference[C]. Proc of the 9th Conf on Uncertainty in Artificial Intelligence. San Mateo: Morgan Kaufmann Publishers, 1993: 122-127.
[8]
Yang S, Natarajan S. Knowledge intensive learning: Combining qualitative constraints with causal independence for parameter learning in probabilistic models[C]. Machine Learning and Knowledge Discovery in Databases. Berlin Heidelberg: Springer, 2013: 580-595.
[9]
Vomlel J, Tichavsk′y P. Computationally efficient probabilistic inference with noisy threshold models based on a CP tensor decomposition[C]. Proc of the 6th European Workshop on Probabilistic Graphical Models(PGM 2012). Granada, 2012: 355-362.
[10]
D’Ambrosio B. Symbolic probabilistic inference in large BN20 networks[C]. Proc of the 10th Conf on Uncertainty in Artificial Intelligence. San Mateo: Morgan Kaufmann Publishers, 1994: 128-135.
[11]
Li W, Poupart P, van Beek P. Exploiting structure in weighted model counting approaches to probabilistic inference[J]. J of Artificial Intelligence Research, 2011, 40(1): 729-765.
[12]
Pradhan M, Provan G, Middleton B, et al. Knowledge engineering for large belief networks[C]. Proc of the 10th Conf on Uncertainty in Artificial Intelligence. San Mateo: Morgan Kaufmann Publishers, 1994: 484-490.
[13]
Luque M, D′?ez F J. Variable elimination for influence diagrams with super-value nodes[J]. Int J of Approximate Reasoning, 2010, 51(6): 615-631.
[14]
D′?ez F J, Gal′an S F. Efficient computation for the Noisy-MAX[J]. Int J of Intelligent Systems, 2004, 18(2): 165-177.
[15]
D′?ez F J, Druzdzel M J. Canonical probabilistic models for knowledge engineering[R]. Madrid: UNED, 2007.
[16]
Boutilier C, Friedman N, Goldszmidt M, et al. Contextspecific independence in Bayesian networks[C]. Proc of the 12th Conf on Uncertainty in Artificial Intelligence. San Mateo: Morgan Kaufmann Publishers, 1996: 115-123.
[17]
Zagorecki A, Druzdzel M J. Knowledge engineering for Bayesian networks: How common are Noisy-MAX distributions in practice?[J]. IEEE Trans on Systems, Man, and Cybernetics: Systems, 2013, 43(1): 186-195.
[18]
Zagorecki A, Voortman M, Druzdzel M J. Decomposing local probability distributions in Bayesian networks for improved inference and parameter learning[C]. Proc of the 19th Int Florida Artificial Intelligence Research Society Conf. Menlo Park: AAAI Press, 2006: 860-865.