全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于抽象凸下界估计的群体全局优化算法

DOI: 10.13195/j.kzyjc.2014.0470, PP. 1116-1120

Keywords: 进化算法,下界估计,全局优化,支撑向量,抽象凸

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对确定性全局优化算法极高的计算复杂度以及随机性全局优化算法可靠性较低的问题,在群体进化算法框架下,结合抽象凸理论,提出一种基于抽象凸下界估计的群体全局优化算法.首先,对整个初始群体构建抽象凸下界估计松弛模型;然后,利用不断收紧的下界估计信息安全排除部分无效区域,并指导种群更新,同时借助支撑面的下降方向作局部增强;最后,根据进化信息更新支撑面.数值实验结果表明了所提出算法的有效性.

References

[1]  Avriel M. Nonlinear programming analysis and methods[M]. New Jersey: Prentice Hall, 1976.
[2]  Nelder J A, Mead R A. A simplex method for function minimization[J]. Computer Journal, 1965, 7(7): 308-313.
[3]  Walsh G R. Methods of optimization[M]. London: Wiley Press, 1975: 76-90.
[4]  Tuy H. Convex analysis and global optimization[M]. Dordrecht: Kluwer Academic Publishers, 1998.
[5]  Norkin V I, Pflug G C, Ruszczy′nski A. A branch and bound method for stochastic global optimization[J]. Mathematical Programming, 1998, 83(1/2/3): 425-450.
[6]  Rubinov A M. Abstract convexity and global optimization[M]. Dordrecht: Kluwer Academic Publishers, 2000.
[7]  Beliakov G. Geometry and combinatorics of the cutting angle method[J]. Optimization, 2003, 52(4): 379-394.
[8]  Floudas C A, Gounaris C E. A review of recent advances in global optimization[J]. J of Global Optimization, 2009, 45(1): 3-38.
[9]  Young C T, Zheng Y, Yeh C W, et al. Informationguided genetic algorithm approach to the solution of MINLP problems[J]. Industrial & Engineering Chemistry Research, 2007, 46(5): 1527-1537.
[10]  Storn R, Price K V. Differential evolution: A simple and efficient heuristic for global optimization over continuous spaces[J]. J of Global Optimization, 1997, 11(4): 341-359.
[11]  张春美, 陈杰, 辛斌. 参数适应性分布式差分进化算法[J]. 控制与决策, 2014, 29(4): 701-706.
[12]  (Zhang C M, Chen J, Xin B. Distributed differential evolution algorithm with adaptive parameters[J]. Control and Decision, 2014, 29(4): 701-706.)
[13]  Kennedy J. Particle swarm optimization[C]. Encyclopedia of Machine Learning. New York: Springer, 2010: 760-766.
[14]  Stoean C, Preuss M, Stoean R, et al. Multimodal optimization by means of a topological species conservation algorithm[J]. IEEE Trans on Evolutionary Computation, 2010, 14(6): 842-864.
[15]  张贵军, 何洋军, 郭海锋, 等. 基于广义凸下界估计的多模态差分进化算法[J]. 软件学报, 2013, 24(6): 1177-1195.
[16]  (Zhang G J, He Y J, Guo H F, et al. A differential evolution algorithm for multimodal optimization based on abstract convex underestimation[J]. J of Software, 2013, 24(6): 1177-1195.)
[17]  Kaelo P, Ali M M. A numerical study of some modified differential evolution algorithm[J]. European J of Optimization, 2006, 169(3): 1176-1184.
[18]  Qin A K, Huang V L, Suganthan P N. Differential evolution algorithm with strategy adaptation for global numerical optimization[J]. IEEE Trans on Evolutionary Computation, 2009, 13(2): 398-417.
[19]  Mallipeddi R, Suganthan P N, Pan Q K, et al. Differential evolution algorithm with ensemble of parameters and mutation strategies[J]. Applied Soft Computing, 2011, 11(2): 1679-1696.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133