全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于条件概率的粗糙集不确定性度量

DOI: 10.13195/j.kzyjc.2014.0331, PP. 1099-1105

Keywords: 不确定性度量,公理化定义,边界域,条件概率

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过语义分析,提出一种修正的粗糙集不确定性度量公理化定义.首先,对该定义的数学特征进行分析,提出两种基于条件概率的粗糙集不确定性度量方法;然后,证明它们满足所提出的公理化定义,并导出相应的知识不确定性度量,发现其中一个是现有条件信息熵,另一个与确定性度量形成互补关系.设计算例对各种不确定性度量进行比较分析,验证了所提出的度量公式与不确定性语义保持一致.

References

[1]  Pawlak Z. Rough set: Theoretical aspects of reasoning about data[M]. Boston: Kluwer Academic, 1991: 16-56.
[2]  Dai J H, Xu Q. Approximations and uncertainty measures in incomplete information systems[J]. Information Sciences, 2012, 198(1): 62-80.
[3]  Beaubouef T, Petry F E, Arora G. Information-theoretic measures of uncertainty for rough sets and rough relational databases[J]. Information Sciences, 1998, 109(1/2/3/4): 185-195.
[4]  Liang Jiye, Wang Junhong, Qian Yuhua. A new measure of uncertainty based on knowledge granulation for rough sets[J]. Information Sciences, 2009, 179(4): 458-470.
[5]  李健, 史开泉. 基于条件粗糙熵的粗集不确定性度量[J].系统工程与电子技术, 2008, 30(3): 473-476.
[6]  (Li J, Shi K Q. Uncertainty measurement of rough sets based on conditional entropy[J]. Systems Engineering and Electronics, 2008, 30(3): 473-476.)
[7]  Liang J Y, Shi Z Z. The information entropy, rough entropy and knowledge granulation in rough set theory[J]. Int J of Uncertainty, Fuzziness and Knowledge-based Systems, 2004, 12(1): 37-46.
[8]  Liang J Y, Shi Z Z, Wierman M J. Information entropy, rough entropy and knowledge granulation in incomplete information systems[J]. Int J of General Systems, 2006, 35(6): 641-654.
[9]  Bianucci D, Cattaneo G, Ciucci D. Entropies and co-entropies of coverings with application to incomplete information systems[J]. Fundamenta Informatiace, 2007, 75(1/2/3/4): 77-105.
[10]  Zhu Ping, Wen Qiaoyan. Entropy and co-entropy of a covering approximation space[J]. Int J of Approximate Reasoning, 2012, 53(4): 528-540.
[11]  Qian Y, Liang J. Combination entropy and combination granulation in rough set theory[J]. Int J of Uncertainty, Fuzziness and Knowledge-Based Systems, 2008, 16(2): 179-193.
[12]  Dai J H, Wang W T, Xu Q, et al. Uncertainty measurement for interval-valued decision systems based on extended conditional entropy[J]. Knowledge-based Systems, 2012, 27(1): 443-450.
[13]  Dai Jianhua, Tian Haowei. Entropy measures and granularity measures for set-valued information systems[J]. Information Sciences, 2013, 240(1): 72-82.
[14]  王国胤, 张清华. 不同知识粒度下粗糙集的不确定性研究[J]. 计算机学报, 2008, 31(9): 1588-1598.
[15]  (Wang G Y, Zhang Q H. Uncertainty of rough sets in different knowledge granularities[J]. Chinese J of Computers, 2008, 31(9): 1588-1598.)
[16]  Wei Wei, Liang Jiye, Qian Yuhua, et al. Can fuzzy entropies be effective measures for evaluating the roughness of a rough set[J]. Information Sciences, 2013, 232(1): 143-166.
[17]  胡军, 王国胤. 粗糙集的不确定度量准则[J]. 模式识别与人工智能, 2010, 23(5): 606-615.
[18]  (Hu J, Wang G Y. Uncertainty measure rule sets on rough sets[J]. Pattern Recongtion and Artificial Intelligence, 2010, 23(5): 606-615.)
[19]  程玉胜, 张佑生, 胡学钢. 基于边界域的知识粗糙熵与粗集粗糙熵[J]. 系统仿真学报, 2007, 19(9): 2008-2011.
[20]  (Cheng Y S, Zhang Y S, Hu X G. Entropy of knowledge and rough set based on boundary region[J]. J of System Simulation, 2007, 19(9): 2008-2011.)
[21]  Wang G Y, Zhao J, An J J, et al. A comparative study of algebra viewpoint and information viewpoint in attribute reduction[J]. Fundamenta Informaticae, 2005, 68(3): 289-301.
[22]  Qian Y H, Liang J Y, Li D Y, et al. Measures for evaluating the decision performance of a decision table in rough set theory[J]. Information Sciences, 2008, 178(1): 181-202.
[23]  Fan J L, Ma Y L. Some new fuzzy entropy formulas[J]. Fuzzy Sets and Systems, 2002, 128(2): 277-284.
[24]  Chakrabary K, Biswas R, Nanda S. Fuzziness in rough sets[J]. Fuzzy Sets and Systems, 2000, 110(2): 247-251.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133