全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于网格化拉马克学习机制的差分进化算法

DOI: 10.13195/j.kzyjc.2014.0325, PP. 1085-1091

Keywords: 拉马克主义,达尔文进化,差分进化算法,获得性遗传,网格化拉马克学习

Full-Text   Cite this paper   Add to My Lib

Abstract:

引入拉马克进化理念,提出一种基于网格化拉马克学习机制的差分进化算法.该算法在网格划分机制建立起的分布式搜索框架下,采用单元格最优解保护机制、学习步长机制、解空间同仁机制和定矢变异机制组成拉马克学习模式.仿真结果表明,所提算法可以充分发挥拉马克学习的局部搜索能力,又可有效避免早熟收敛,其求解精度明显优于其他比较算法.将所提算法应用于电力系统最优潮流计算问题,获得了良好的优化效果.

References

[1]  Kenneth P, Rainer S. Differential evolution-a practical approach to global optimization[M]. Berlin: Springer-Verlag, 2006: 133-152.
[2]  Das S, Abraham A, Konar A. Automatic clustering using an improved differential evolution algorithm[J]. IEEE Trans on Systems, Man, and Cybernetics, 2008, 38(1): 218-236.
[3]  刘继栋, 王锡淮, 肖健梅. 基于十进制编码的差分进化算法在配电网重构中的应用[J]. 电力自动化设备, 2012, 32(5): 94-97.
[4]  (Liu J D, Wang X H, Xiao J M. Distribution network reconfiguration based on differential evolution algorithm using decimal encoding[J]. Electric Power Automation Equipment, 2012, 32(5): 94-97.)
[5]  Brest J, Grener S, Boskovic B. Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems[J]. IEEE Trans on Evolutionary Computation, 2006, 10(6): 646-657.
[6]  张春美, 陈杰, 辛斌. 参数适应性分布式差分进化算法[J]. 控制与决策, 2014, 29(4): 701-706.
[7]  (Zhang C M, Chen J, Xin B. Distributed differential evolution algorithm with adaptive parameters[J]. Control and Decision, 2014, 29(4): 701-706.)
[8]  毕晓君, 刘国安, 肖婧. 基于新变异策略的动态自适应差分进化算法[J]. 计算机研究与发展, 2012, 49(6): 1288-1297.
[9]  (Bi X J, Liu G A, Xiao J. Dynamic adaptive differential evolution based on novel mutation strategy[J]. J of Computer Research and Development, 2012, 49(6): 1288-1297.)
[10]  Das S, Abraham A, Konar A. Particle swarm optimization and differential evolution algorithms: Technical analysis, applications and hybridization perspectives[J]. Studies in Computational Intelligence, 2008, 116: 1-38.
[11]  熊伟丽, 徐迈, 徐保国. 基于差分蜂群算法的电力系统经济负荷分配[J]. 控制与决策, 2011, 26(12): 1813-1817.
[12]  (Xiong W L, Xu M, Xu B G. Differential bee colony algorithm for non-convex economic load dispatch[J]. Control and Decision, 2011, 26(12): 1813-1817.)
[13]  王凌, 黄付卓, 李灵坡. 基于混合双种群差分进化的电力系统经济负荷分配[J]. 控制与决策, 2009, 24(8): 1157-1166.
[14]  (Wang L, Huang F Z, Li L P. Economic distribution of power systems based on hybrid differential evolution with double populations[J]. Control and Decision, 2009, 24(8): 1157-1166.)
[15]  Ong Y S, Keane A J. Lamarckian learning in memetic algorithm[J]. IEEE Trans on Evolutionary Computation, 2008, 8(2): 99-100.
[16]  刘峰, 左晓静, 张坤. 一种新型遗传算法[J]. 计算机工程与应用, 2010, 46(12): 46-50.
[17]  (Liu F, Zuo X J, Zhang K. Novel genetic algorithm[J]. Computer Engineering and Applications, 2010, 46(12): 46-50.)
[18]  栾志博, 黄其涛, 姜洪洲, 等. 遗传算法中两种学习机制的混合应用[J]. 系统工程与电子技术, 2009, 31(8): 1985-1988.
[19]  (Luan Z B, Huang Q T, Jiang H Z, et al. Mixed application of two learning mechanisms in genetic algorithm[J]. Systems Engineering and Electronics, 2009, 31(8): 1985-1988.)
[20]  阎岭, 蒋静坪. 进化学习策略收敛性和逃逸能力的研究[J]. 自动化学报, 2005, 31(6): 873-877.
[21]  (Yan L, Jiang J P. Convergence and escape capacity research of evolution learning strategies[J]. Acta Automatica Sinica, 2005, 31(6): 873-877.)
[22]  Bird A. Perceptions of epigenetics[J]. Nature, 2007, 447(7143): 396-398.
[23]  Hinton G E, Nowlan S J. How learning can guide evolution[J]. Complex System, 1987, 1(3): 495-502.
[24]  Yao X, Liu Y, Lin G. Evolutionary programming made faster[J]. IEEE Trans on Evolutionary Computation, 1999, 3(2): 82-102.
[25]  Noman N, Iba H. Accelerating differential evolution using an adaptive local search[J]. IEEE Trans on Evolutionary Computation, 2008, 12(1): 107-125.
[26]  Das S, Abraham A. Differential evolution using a neighborhood-based mutation operator[J]. IEEE Trans on Evolutionary Computation, 2009, 13(3): 526-553.
[27]  Qu B Y, Suganthan P N. Differential evolution with neighborhood mutation for multimodal optimization[J]. IEEE Trans on Evolutionary Computation, 2012, 16(5): 601-614.
[28]  赵树本, 张伏生. 基于改进差分进化算法的电力系统最优潮流计算[J]. 电网技术, 2010, 34(8): 123-128.
[29]  (Zhao S B, Zhang F S. Solution of optimal power flow based on differential evolution and its modified algorithm[J]. Power System Technology, 2010, 34(8): 123-128.)
[30]  Zimmerman R, Gan D. MATPOWER: A Matlab power system[M]. New York: Cornell University, 1997: 34-36.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133