全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于IFN输入的复杂系统关联MCGDM方法

DOI: 10.13195/j.kzyjc.2014.0204, PP. 1065-1077

Keywords: 多准则群决策,直觉模糊熵,幂均算子,广义直觉模糊幂均算子

Full-Text   Cite this paper   Add to My Lib

Abstract:

考虑现有直觉模糊熵公理化定义存在的不足,提出改进直觉模糊熵的公理化定义及其计算公式;同时,定义广义幂均算子,验证其相关性质,给出确定幂方参数的方法,并将其推广至广义直觉模糊幂均算子;在以直觉模糊数(IFN)为信息输入的复杂系统框架内,针对决策者及准则之间均存在交互关联关系且权重信息完全未知的多准则群决策(MCGDM)问题,提出基于直觉模糊熵与广义直觉模糊幂均算子的关联MCGDM方法.案例分析表明,所提出的方法是可行且有效的.

References

[1]  魏翠萍, 梁霞, 张玉忠. 直觉模糊集的熵公式比较与改进[J]. 系统科学与数学, 2012, 32(11): 1437-1448.
[2]  (Wei C P, Liang X, Zhang Y Z. A comparative analysis and improvement of entropy measure for intuitionistic fuzzy sets[J]. J of Systems Science and Mathematical Sciences, 2012, 32(11): 1437-1448.)
[3]  Vlachos I K, Sergiadis G D. The role of entropy in intuitionistic fuzzy contrast enhancement[C]. Foundations of Fuzzy Logic and Soft Computing. Berlin: Springer, 2007: 104-113.
[4]  Szmidt E, Kacprzyk J. Entropy for intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems, 2001, 118(3): 467-477.
[5]  Xia M, Xu Z. Entropy/cross entropy-based group decision making under intuitionistic fuzzy environment[J]. Information Fusion, 2012, 13(1): 31-47.
[6]  HungWL, YangMS. Fuzzy entropy on intuitionistic fuzzy sets[J]. Int J of Intelligent Systems, 2006, 21(4): 443-451.
[7]  Mao J, Yao D, Wang C. A novel cross-entropy and entropy measures of IFSs and their applications[J]. Knowledge-Based Systems, 2013, 48: 37-45.
[8]  Yager R R. The power average operator[J]. IEEE Trans on Systems, Man and Cybernetics, Part A: Systems and Humans, 2001, 31(6): 724-731.
[9]  万树平. 基于幂均算子的区间型多属性决策方法[J]. 控制与决策, 2009, 24(11): 1673-1676.
[10]  (Wan S P. Method based on power average operator for interval multi-attribute decision-making[J]. Control and Decision, 2009, 24(11): 1673-1676.)
[11]  Xu Z, Yager R R. Power-geometric operators and their use in group decision making[J]. IEEE Trans on Fuzzy Systems, 2010, 18(1): 94-105.
[12]  Xu Z. Approaches to multiple attribute group decision making based on intuitionistic fuzzy power aggregation operators[J]. Knowledge-Based Systems, 2011, 24(6): 749-760.
[13]  Xu Z S, Yager R R. Some geometric aggregation operators based on intuitionistic fuzzy sets[J]. Int J of General Systems, 2006, 35(4): 417-433.
[14]  Xu Z S. Intuitionistic fuzzy aggregation operators[J]. IEEE Trans on Fuzzy Systems, 2007, 15(6): 1179-1187.
[15]  Chen S M, Tan J M. Handing multicriteria fuzzy decision-making problems based on vague set theory[J]. Fuzzy Sets and Systems, 1996, 67(2): 221-236.
[16]  Hong D H, Choi C H. Multicriteria fuzzy decision making problems based on vague set theory[J]. Fuzzy Sets and Systems, 2000, 114(1): 103-113.
[17]  Xu Z S. Models for multiple attribute decision making with intuitionistic fuzzy information[J]. Int J of Uncertainty Fuzziness and Knowledge Based Systems, 2007, 15(3): 285-297.
[18]  魏翠萍, 高志海, 郭婷婷. 一个基于三角函数的直觉模糊熵公式[J]. 控制与决策, 2012, 27(4): 571-574.
[19]  (Wei C P, Gao Z H, Guo T T. An intuitionistic fuzzy entropy measure based on trigonometric function[J]. Control and Decision, 2012, 27(4): 571-574.)
[20]  Zhiming Zhang. Generalized Atanassov’s intuitionistic fuzzy power geometric operators and their application to multiple attribute group decision making[J]. Information Fusion, 2013, 14(4): 460-486.
[21]  Keeney L R. Foundations for group decision analysis[J]. Decision Analysis, 2013, 10(2): 103-120.
[22]  Lahdelma R, Salminen P. SMAA-2: Stochastic multicriteria acceptability analysis for group decision making[J]. Operations Research, 2001, 49(3): 444-454.
[23]  Zhang L, Li T, Xu X. Consensus model for multiple criteria group decision making under intuitionistic fuzzy environment[J]. Knowledge-Based Systems, 2014, 57: 127-135.
[24]  Herrera F, Herrera-Viedma E. A model of consensus in group decision making under linguistic assessments[J]. Fuzzy Sets and Systems, 1996, 78(1): 73-87.
[25]  Herrera F, Herrera-Viedma E, Verdegay J L. Direct approach processes in group decision making using linguistic OWA operators[J]. Fuzzy Sets and Systems, 1996, 79(2): 175-190.
[26]  Liu P, Yu X. 2-Dimension uncertain linguistic power generalized weighted aggregation operator and its application in multiple attribute group decision making[J]. Knowledge-Based Systems, 2014, 57: 69-80.
[27]  Perez I J, Cabrerizo F J, Alonso S, et al. A new consensus model for group decision making problems with non-homogeneous experts[J]. IEEE Trans on Systems, Man, and Cybernetics: Systems, 2014, 44(4): 494-498.
[28]  Dong Y, Zhang G, Hong W C, et al. Consensus models for AHP group decision making under row geometric mean prioritization method[J]. Decision Support Systems, 2010, 49(3): 281-289.
[29]  Xu Z. Induced uncertain linguistic OWA operators applied to group decision making[J]. Information Fusion, 2006, 7(2): 231-238.
[30]  Fan Z P, Liu Y, Feng B. A method for stochastic decision making based on pairwise comparisons of alternatives with random evaluations[J]. European J of Operational Research, 2010, 207(2): 906-915.
[31]  Fan Z P, Zhang X, Liu Y. A method for stochastic multiple attribute decision making based on concepts of ideal and anti-ideal points[J]. Applied Mathematics and Computation, 2013, 219(24): 11438-11450.
[32]  Fan Z P, Feng B. A multiple attributes decision making method using individual and collaborative attribute data in a fuzzy environment[J]. Information Sciences, 2009, 179(20): 3603-3618.
[33]  Wu Z, Xu J. A consistency and consensus based decision support model for group decision making with multiplicative preference relations[J]. Decision Support Systems, 2012, 52(3): 757-767.
[34]  Yue Z. A method for group decision-making based on determining weights of decision makers using TOPSIS[J]. Applied Mathematical Modelling, 2011, 35(4): 1926-1936.
[35]  Yue Z. Deriving decision maker’s weights based on distance measure for interval-valued intuitionistic fuzzy group decision making[J]. Expert Systems with Applications, 2011, 38(9): 11665-11670.
[36]  Zadeh L A. Probability measures of fuzzy events[J]. J of Mathematical Analysis and Applications, 1968, 23(2): 421-427.
[37]  Burillo P, Bustince H. Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets[J]. Fuzzy Sets and Systems, 1996, 78(3): 305-316.
[38]  De Luca A, Termini S. A definition of a nonprobabilistic entropy in the setting of fuzzy sets theory[J]. Information and Control, 1972, 20(4): 301-312.
[39]  Zhou L, Chen H, Liu J. Generalized power aggregation operators and their applications in group decision making[J]. Computers & Industrial Engineering, 2012, 62(4): 989-999.
[40]  Zhang Z. Hesitant fuzzy power aggregation operators and their application to multiple attribute group decision making[J]. Information Sciences, 2013, 234: 150-181.
[41]  Atanassov K. Intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems, 1986, 20(1): 87-96.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133