全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

知识迁移极大熵聚类算法

DOI: 10.13195/j.kzyjc.2014.0770, PP. 1000-1006

Keywords: 知识迁移,极大熵聚类,隐私保护,负迁移

Full-Text   Cite this paper   Add to My Lib

Abstract:

为解决数据不足或失真等环境下传统聚类技术效果不佳的问题,基于历史类中心和历史隶属度提出两种知识迁移机制,并与极大熵聚类方法融合提出知识迁移极大熵聚类算法KT-MEC.KT-MEC的优点是:利用历史知识,KT-MEC聚类有效性和实用性明显增强;内嵌迁移机制均不暴露源域数据,从而拥有源域隐私保护能力;KT-MEC基于的“参数寻优+聚类有效性度量”机制理论上保证其性能不差于经典极大熵算法,避免了负迁移问题.

References

[1]  Gao J, Fan W, Jiang J, et al. Knowledge transfer via multiple model local structure mapping[C]. Proc of The 14th Acm Sigkdd Int Conf on Knowledge Discovery and Data Mining. New York: ACM, 2008: 283-291.
[2]  Tao J, Chung F L, Wang S T. On minimum distribution discrepancy support vector machine for domain adaptation[J]. Pattern Recognition, 2012, 45(11): 3962-3984.
[3]  Yang P, Tan Q, Ding Y, Bayesian task-level transfer learning for non-linear regression[C]. 2008 Int Conf on Computer Science and Software Engineering. Wuhan: IEEE, 2008: 62-65.
[4]  Deng Z H, Jiang Y Z, Choi K S, et al, Knowledgeleverage-based TSK fuzzy system modeling[J]. IEEE Trans on Neural Netw Learning System, 2013, 24(8): 1200-1212.
[5]  Wang Z, Song Y Q, Zhang C S. Transferred dimensionality reduction[C]. Lecture Notes in Computer Science. Berlin: Springer Heidelberg, 2008: 550-565.
[6]  Pan S J, Kwok J T, Yang Q. Transfer learning via dimensionality reduction[C]. The 23rd Conf on Artificial Intelligence. Illinois : AAAI, 2008, 8: 677-682.
[7]  DaiWY, Yang Q, Xue G R, et al. Self-taught clustering[C]. Proc of the 25th Int Conf on Machine Learning. Helsinki: ACM, 2008, 8: 200-207.
[8]  Jiang W H, Chung F L. Transfer spectral clustering[C]. Machine Learning and Knowledge Discovery in Databases. Berlin: Springer Heidelberg, 2012: 789-803.
[9]  H¨oppner F, Klawonn F, Kruse R. Fuzzy cluster analysis: Methods for classification, data analysis and image recognition[M]. New York: Wiley, 1999: 197-221.
[10]  Bezdek J C, Hathaway R J. Numerical convergence and interpretation of the fuzzy c-shells clustering algorithms[J]. IEEE Trans on Neural Netw, 1992, 3(5): 787-793.
[11]  Wu K L, Yu J, Yang M S. A novel fuzzy clustering algorithm based on a fuzzy scatter matrix with optimality tests[J]. Pattern Recognition Lett, 2005, 26(5): 639-652.
[12]  Karayiannis N B. MECA: Maximum entropy clustering algorithm[C]. Proc of the 3rd IEEE Conf on IEEE World Congress on Computational Intelligence. Orlando: IEEE, 1994: 630-635.
[13]  Li R P, Mukaidono M A. A maximum entropy approach to fuzzy clustering[C]. Proc on IEEE Int Conf Fuzzy System. Yokohama: IEEE, 1995: 2227-2232.
[14]  Wang S T, Chung K, Deng Z H, et al. Robust maximum entropy clustering with its labeling for outliers[J]. Soft Compt, 2006, 10(7): 555-563.
[15]  Zhi X B, Fan J L, Zhao F. Fuzzy linear discriminant analysis-guided maximum entropy fuzzy clustering algorithm[J]. Pattern Recognition, 2013, 46(6): 1604-1615.
[16]  Qian P Q, Chung F L, Wang S T, et al. Fast graphbased relaxed clustering for large data sets using minimal enclosing ball[J]. IEEE Trans on Systems, Man and Cybernetics, 2012, 42(3): 672-687.
[17]  Desgraupes B. Clustering indices[M]. Paris: University of Paris Ouest, 2013: 70-84.
[18]  Gu Q, Zhou J. Learning the shared subspace for multi-task clustering and transductive transfer classification[C]. The 9th IEEE Int Conf on Data Mining. Miami: IEEE, 2009: 159-168.
[19]  Liu J, Mohammed J, Carter J, et al. Distance-based clustering of CGH data[J]. Bioinformatics, 2006, 22(16): 1971-1978.
[20]  Dai W Y, Xue G R, Yang Q, et al. Co-clustering based classification for out-of-domain documents[C]. The 13th ACM Sigkdd Int Conf on Knowledge Discovery and Data Mining. New York: ACM, 2007: 210-219.
[21]  McCallum A K. Bow: A toolkit for statistical language modeling, text retrieval, classification and clustering [DB/OL]. [1996-12-15]. (2014-01-15). http://www.cs.cmu.edu/mccallum/bow.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133