全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于贡献率的离散Hopfield结构优化

DOI: 10.13195/j.kzyjc.2014.1320, PP. 2061-2066

Keywords: 离散Hopfield,结构优化,连接权值,贡献率

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对离散Hopfield神经网络(DHNN)结构复杂的问题,提出一种基于贡献率的结构优化算法.该算法利用奇异值分解方法对连接权值进行设计,进而利用贡献率的方法对DHNN进行结构优化.优化后的网络降低了DHNN结构的复杂程度,使网络具有类似生物神经网络的稀疏结构,实现了DHNN网络结构的优化.最后,通过水质评价和数字识别对该算法进行验证,表明了所提出算法的有效性和可行性,同时,还验证了其对于大规模DHNN的有效性和适用性.

References

[1]  Hopfield J J. Neural networks and physical systems with emergent collective computational abilities[J]. Proc of the National Academy of Sciences, 1982, 79(8): 2554-2558.
[2]  Hopfield J J. Neurons with graded response have collective computational properties like those of two-state neurons[J]. Proc of the National Academy of Sciences, 1984, 81(10): 3088-3092.
[3]  Pajares Gonzalo, Guijarro María, Ribeiro Angela. A Hopfield neural network for combining classifiers applied to textured images[J]. Neural Networks, 2010, 23(1): 144-153.
[4]  Pengsheng Zheng, Wansheng Tang, Jianxiong Zhang. A simple method for designing efficient small-world neural networks[J]. Neural Networks, 2010, 23(2): 155-159.
[5]  Mei Shaohui, He Mingyi, Shen Zhiming. Optimizing Hopfield neural network for spectral mixture unmixing on GPU platform[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(4): 818-822.
[6]  Ghatee Mehdi, Niksirat Malihe. A Hopfield neural network applied to the fuzzy maximum cut problem under credibility measure[J]. Information Sciences, 2013, 229: 77-93.
[7]  高海昌, 冯博琴, 朱利. 智能优化算法求解TSP 问题[J]. 控制与决策, 2006, 21(3): 241-247.
[8]  (Gao H C, Feng B Q, Zhu L. Reviews of the meta-heuristic algorithms for TSP[J]. Control and Decision, 2006, 21(3): 241-247.)
[9]  Oshima Hiraku, Odagaki Takashi. Storage capacity and retrieval time of small-world neural networks[J]. Physical Review E, 2007, 76(3): 1539-3755.
[10]  Watts D J, Strogatz S H. Collective dynamics of “smallworld” networks[J]. Nature, 1998, 393 (6684): 440-442.
[11]  Bohland J W, Minai A A. Effcient associative memory using small-world architecture[J]. Neurocomputing, 2001, 38: 489-496.
[12]  Brot Hilla, Muchnik Lev, Goldenberg Jacob, et al. Feedback between node and network dynamics can produce real-world network properties[J]. Physica A, 2012, 391(24): 6645-6654.
[13]  Stauffer D, Aharony A, Costa L F, et al. Efficient Hopfield pattern recognition on a scale-free neural network[J]. European Physical Journal B, 2003, 32(3): 395-399.
[14]  Morelli L G, Abramson G, Kuperman M N. Associative memory on a small-world neural network[J]. European Physical J: B, 2004, 38(3): 495-500.
[15]  Han Honggui, Qiao Junfei. Nonlinear model-predictive control for industrial processes: An application to wastewater treatment process[J]. IEEE Trans on Industrial Electronics, 2014, 61(4): 1970-1982.
[16]  Qiao Junfei, Han Honggui. Modelling and identification of nonlinear dynamic systems using a novel self-organizing RBF-based approach[J]. Automatica, 2012, 48(8): 1729-1734.
[17]  李荣, 乔俊飞, 韩红桂. 一种改进型离散Hopfield 学习算法[J]. 控制与决策, 2014, 29(2): 241-245.
[18]  (Li R, Qiao J F, Han H G. An improved learning algorithm for discrete Hopfield[J]. Control and Decision, 2014, 29(2): 241-245.)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133