Hopfield J J. Neural networks and physical systems with emergent collective computational abilities[J]. Proc of the National Academy of Sciences, 1982, 79(8): 2554-2558.
[2]
Hopfield J J. Neurons with graded response have collective computational properties like those of two-state neurons[J]. Proc of the National Academy of Sciences, 1984, 81(10): 3088-3092.
[3]
Pajares Gonzalo, Guijarro María, Ribeiro Angela. A Hopfield neural network for combining classifiers applied to textured images[J]. Neural Networks, 2010, 23(1): 144-153.
[4]
Pengsheng Zheng, Wansheng Tang, Jianxiong Zhang. A simple method for designing efficient small-world neural networks[J]. Neural Networks, 2010, 23(2): 155-159.
[5]
Mei Shaohui, He Mingyi, Shen Zhiming. Optimizing Hopfield neural network for spectral mixture unmixing on GPU platform[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(4): 818-822.
[6]
Ghatee Mehdi, Niksirat Malihe. A Hopfield neural network applied to the fuzzy maximum cut problem under credibility measure[J]. Information Sciences, 2013, 229: 77-93.
(Gao H C, Feng B Q, Zhu L. Reviews of the meta-heuristic algorithms for TSP[J]. Control and Decision, 2006, 21(3): 241-247.)
[9]
Oshima Hiraku, Odagaki Takashi. Storage capacity and retrieval time of small-world neural networks[J]. Physical Review E, 2007, 76(3): 1539-3755.
[10]
Watts D J, Strogatz S H. Collective dynamics of “smallworld” networks[J]. Nature, 1998, 393 (6684): 440-442.
[11]
Bohland J W, Minai A A. Effcient associative memory using small-world architecture[J]. Neurocomputing, 2001, 38: 489-496.
[12]
Brot Hilla, Muchnik Lev, Goldenberg Jacob, et al. Feedback between node and network dynamics can produce real-world network properties[J]. Physica A, 2012, 391(24): 6645-6654.
[13]
Stauffer D, Aharony A, Costa L F, et al. Efficient Hopfield pattern recognition on a scale-free neural network[J]. European Physical Journal B, 2003, 32(3): 395-399.
[14]
Morelli L G, Abramson G, Kuperman M N. Associative memory on a small-world neural network[J]. European Physical J: B, 2004, 38(3): 495-500.
[15]
Han Honggui, Qiao Junfei. Nonlinear model-predictive control for industrial processes: An application to wastewater treatment process[J]. IEEE Trans on Industrial Electronics, 2014, 61(4): 1970-1982.
[16]
Qiao Junfei, Han Honggui. Modelling and identification of nonlinear dynamic systems using a novel self-organizing RBF-based approach[J]. Automatica, 2012, 48(8): 1729-1734.