全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

三态协调搜索多目标粒子群优化算法

DOI: 10.13195/j.kzyjc.2014.1378, PP. 1945-1952

Keywords: 多目标优化,粒子群优化,指导粒子选择策略,搜索能力,外部档案

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出一种三态协调搜索多目标粒子群优化算法.该算法提出的三态指导粒子选择策略可以很好地协调算法的局部和全局搜索能力,且算法改进了传统的外部档案保存机制,同时引入3种突变因子,使获得的非劣解具有更好的分散性.通过对标准测试函数的求解,并与其他经典多目标优化算法比较,表明了新算法在收敛性和多样性方面均有较大的优越性.最后分析了区域划分系数对所提出算法性能的影响.

References

[1]  Kennedy J, Eberhart R C.Particle swarm optimization[C]. Proc of IEEE Int Conf on Neural Networks. Perth: IEEE Service Cneter, 1995: 1942-1948.
[2]  潘峰, 李位星, 高琪. 粒子群优化算法多目标优化[M]. 北京: 北京理工大学出版社, 2013: 23-30.
[3]  (Pan F, LiWX, Gao Q. Particle swarm optimization multi-objectives optimization[M]. Beijing: Beijing Institute Technology Press, 2013: 23-30.)
[4]  Kennedy J. Small worlds and mega-minds: Effects of neighborhood topology on particle swarm performance[C]. Proc of the 1999 Congress on Evolutionary Computation. Washington DC: IEEE Press, 1999: 1933-1938.
[5]  Zitzler E, Deb K, Thiele L. Comparison of multiobjective evolutionary algorithms: Empirical results[J]. Evolutionary Computation, 2000, 8(2): 173-195.
[6]  Hu Xiaohui, Eberhart R. Multiobjective optimization using dynamic neighborhood particle swarm optimization[C]. Proc of the 2002 Congress on Evolutionary Computation. Honolulu, 2002: 1677-1681.
[7]  Carlo R Raquel, Prospero C Naval. An effective use of crowding distance in multiobjective particle swarm optimization[C]. Proc of the 2005 Conf on Genetic and Evolutionary Computation. New York: ACM, 2005: 257-264.
[8]  Li Xiaodong. Better spread and convergence: Particle swarm multiobjective optimization using the maximin fitness function[C]. The 6th Annual Genetic and Evolutionary Computation Conf. Berlin: Springer Heidelberg, 2004: 117-128.
[9]  Coello C Ac, Pulido G T, Lechuga M S. Handling multiple objectives with particle swarm optimization[J]. IEEE Trans on Evolutionary Computation, 2004, 8(3): 256-279.
[10]  Reddy M Janga, Kumar D Nagesh. An efficient multi-objective optimization algorithm based on swarm intelligence for engineering design[J]. Engineering Optimization, 2007, 39(1): 49-68.
[11]  向长城, 黄席樾, 杨祖元, 等. 小生境粒子群优化算法[J]. 计算机工程与应用, 2007, 43(15): 41-43.
[12]  (Xiang C C, Huang X Y, Yang Z Y, et al. Niche particle swarm optimization algorithm[J]. Computer Engineering and Applications, 2007, 43(15): 41-43.)
[13]  Mostaghim S, Teich J. Strategies for finding good local guides in multi-objective particle swarm optimization(MOPSO)[C]. Proc of the 2003 IEEE Swarm Intelligence Symposium. Indianapolis: IEEE Press, 2003: 26-33.
[14]  Toscano Pulido G, Coello Coello C A. Using clustering techniques to improve the performance of a particle swarm optimizer[C]. Proc of Genetic and Evolutionary Computation Conference. Berlin: Springer Heidelberg, 2004: 225-237.
[15]  Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Trans on Evolutionary Computation, 2002, 6(2): 182-197.
[16]  Margarita Reyes Sierra, Coello Coello C A. Improving pso-based multi-objective optimization using crowding, mutation and ??-dominance[J]. Evolutionary Multi-Criterion Optimization, 2005(3140): 505-519.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133