全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于矢量基学习的浸出过程在线建模

, PP. 629-632

Keywords: 支持向量回归,矢量基,在线建模,浸出过程

Full-Text   Cite this paper   Add to My Lib

Abstract:

传统的支持向量回归算法因基于批量训练方法而无法适应浸出过程在线建模实时性的要求.在分析研究一种基于矢量基学习的支持向量回归算法的基础上,提出了基于矢量基学习的浸出过程在线建模方法.利用贝叶斯证据框架优化模型参数,分析新样本矢量与矢量空间的夹角,从而推导出该样本是否为基矢量.将该方法应用于浸出过程浸出率的预测,实验结果表明,该方法不但能很好地跟踪浸出率的变化趋势,而且显著地缩短了运算时间.

References

[1]  马荣骏.湿法冶金新发展[J].湿法冶金,2007,26(1):1-12. Ma Rongju. New development of hydrometallurgy [J]. Hydrometallurgy of Chin, 2007,26(1):1-12. [2] Breed A. W., Hansford G. S.. Modeling continuous bioleach reactors[J]. Biotechnology and Bioengineering, 1999,64: 671-677. [3] Veglio F., Trifoni M., Toro L.. Leaching of manganiferous ores by glucose in a sulfuric acid solution: Kinetic Modeling and Related Statistical Analysis[J]. American Chemical Society, 2001,40(18): 3895-3901. [4] Crundwell F. K.. Modeling, simulation, and optimization of bacterial leaching reactors[J]. Biotechnology and Bioengineering, 2000,71(4):255-265. [5] Bakshi B. R., Locher G., Stephanopoulos G.. Analysis of operating data for evaluation, diagnosis, and control of batch operations[J]. Journal of Process Control, 1994,4(4): 179-194. [6] Warnes M. R., Glassey J., Montague G. A., Kara B.. On data-based modelling techniques for fermentation processes[J]. Process Biochemistry, 1996,31(2): 147-155. [7] Vapnik V. N.. The Nature of Statistical Learning Theory. New York: Springer, 1995:20-41. [8] 陈爱军,宋执环,李平. 基于矢量基学习的最小二乘支持向量机建模[J]. 控制理论与应用, 2007, 24(1):1-5. Chen Ai-jun, Song Zhi-huan, Li Ping. Modeling method of least squares support vector regression based on vector base learning[J]. Control Theory & Applications, 2007, 24(1):1-5. [9] Mackay D J C. Probable network and plausible predictions-a review ofpractical Bayesian methods for supervised neural networks[J]. Network: Computation in Neural Systems, 1995, 6(3): 469~505.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133