全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于T-S模型和小世界优化算法的广义非线性预测控制

, PP. 673-678

Keywords: 小世界优化算法,实数编码,T-S模糊模型,广义非线性预测控制,过热汽温

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出一种新型的基于T-S模糊模型和小世界优化算法的广义非线性预测控制策略.采用基于混沌遗传算法的T-S模糊模型描述复杂非线性系统的动态特性,构成模糊多步预报器.同时,针对现有基于二进制和十进制编码小世界优化算法运行时间长等缺点,提出一种新型的基于实数编码的小世界优化算法,函数测试和应用于非线性预测控制的滚动优化反映了其较强的寻优能力.最后,将其应用于基于实际数据的T-S模糊模型的广义非线性预测控制,满足了系统实时性和快速稳定性的要求.

References

[1]  Clarke D W, Mohtadi C, Tuffs P S. Generalized predictive control [J]. Automatica, 1987, 23(2): 137-160. [2] Nevistic V, Morari M. Constrained control of feedback linearizable systems[C]. Proc of the European Control Conf, Rome: IEEE Press, 1995: 1726-1731. [3] Li W C, Biegler L T. Multistep, Newton-type control strategies for constrained, nonlinear processes[J]. Chem. Res, Des, 1989, 67(3): 562-577. [4] 王寅,荣冈,王树青.基于T-S模糊模型的非线性预测控制策略[J].控制理论与应用,2002,19(4):599-603. Wang Yin, Rong Gang, Wang Shuqing. Nonlinear predictive control strategy based on T-S fuzzy model[J]. Control Theory and Applications, 2002,19(4):599-603. [5] 王书斌,胡品慧,林立.基于T-S模糊模型的状态反馈预测控制[J].控制理论与应用,2007,24(5):819-824. Wang Shubin, Hu Pinhui, Lin Li. State feedback predictive control Based on T-S Fuzzy Model[J]. Control Theory and Applications, 200, 24(5):819-824. [6] 候志祥,吴义虎,袁松贵.基于AEPSO优化的神经网络多步预测控制[J].中南大学学报,2007,38(6):1162-1168. Hou Zhixiang, Wu Yihu, Yuan Songgui. Multi-steps Predictive Control of Neural Networks Based on AEPSO Optimization[J]. J. Cent. South Univ, 2007,38(6):1162-1168. [7] Sun Hairong, Li Peng, Zhou Lihui. A strategy of generalized predictive control based on neural network[C]. Proc of 2004 Int Conf on Machine Learning and Cybernetics, Shanghai: IEEE Press, 2004: 483-487. [8] Shin S C, Park S B. GA-based predictive control for nonlinear processes[J]. Electronics Letters, 1998, 34(20): 1980-1981. [9] 宋莹,陈增强,袁著祉.基于混沌优化的非线性预测控制器[J].控制理论与应用,2007,24(4):561-564. Song Ying, Chen Zengqiang, Yuan Zhuzhi. A Nonlinear Predictive Controller Based on Chaos Optimization[J]. Control Theory and Applications, 2007,24(4):561-564. [10]杜海峰,庄健,张进华.用于函数优化的小世界优化算法[J].西安交通大学学报,2005,39(9):1011-1015. Du Haipeng, Zhuang Jan, Zhang Jinhua, Wang Sun’an. Small-World Phenomenon for Function Optimization[J]. Journal of Xi’an Jiaotong University, 2005, 39(9):1011-1015. [11]李小虎,杜海峰,庄健,王孙安.基于小世界原理的模型降阶优化研究[J].西安交通大学学报,2009,43(1):108-113. Li Xiaohu, Du Haifeng, Zhuang Jian, Wang Sun’an. Model Reduction Optimization Based on Small-World Principle[J]. Journal of Xi’an Jiaotong University, 2009,43(1):108-113. [12]杨斌,杜海峰,庄健.一种具有跟踪替代特征的小世界算法[J].西安交通大学学报,2007,41(11):1360-1363. Yang Bin, Du Haifeng, Zhuang Jian. Small-World Algorithm with the Replacing and Tracking Characters[J]. Journal of Xi’an Jiaotong University, 2007,41(11):1360-1363. [13]穆华平,曾建潮,焦长义.基于小世界领域结构的微粒群算法研究[J].太原科技大学学报,2009,30(1):7-11. Mu Huaping, Zeng Jianchao, Jiao Changyi. Particle Swarm Optimization Based on the Structure of Small-World Field [J]. Journal of TaiYuan University of Science and Technology, 2009,30(1):7-11. [14]张育林,庄健,李小虎,王孙安.小世界领域优化的局部线性嵌入算法[J].西安交通大学学报,2008,42(12):1486-1489. Zhang Yulin, Zhuang Jian, Li Xiaohu, Wang Sun’an. Small-World Neighborhood Optimized Local Linear Embedding Algorithm[J]. Journal of Xi’an Jiaotong University, 2008,42(12):1486-1489. [15] Xiaohu Li, Haifeng Du,Jian Zhuang,Sunan Wang.A PID parameters tuning algorithm inspired by the small world phenomenon[C]. Proc of the 4th Int Conf on Intelligent Computing. Heidelberg: Springer Verlag, 2008: 817-824. [16]Takagi T, Sugeno M. Fuzzy Identification of Systems and Its Applications to Modeling and Control[J]. IEEE Transactions on SMC, 1985, 15(1): 116-132.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133