全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

有向网络下线性多个体系统的整体行为—–矩阵方法

, PP. 661-666

Keywords: Frobenius,标准型,对角占优,惯性,带权中心,凸组合

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究了有向通讯网络条件下一阶和二阶线性多个体协同动力学系统整体行为的矩阵代数性质.利用矩阵分析的方法将系统的系数矩阵变换为Frobenius标准型,由此将系统分解为独立基本子系统和非独立基本子系统的组成结构.通过研究行和为零的对角占优矩阵的性质,得出了对线性多个体协同动力学系统整体行为起决定作用的系数矩阵的性质,从而将这一问题转换为普通线性代数问题.

References

[1]  R.Olfati-Saber, RM. Murray.Consensus Problems in Networks of Agents with Switching Topology and Time-Delays[J].IEEE Trans. Automat. Control,2004,49(9):1520-1533 [2]R.Olfati-SaberFlocking for multi-agent dynamic systems: Algorithms and theory[J].IEEE Trans. Automat. Control,2006,51(3):401-420 [3]Zhi-Yun Lin.Coupled Dynamic Systems: From Structure Towards Stability And Stabilizability[J].Department of Electrical and Computer Engineering, University of Toronto,2006,Doctorial Dissertation :.[4]Wei Ren, Ella Atkin .Second-order Consensus Protocols in Multiple Vehicle Systems with Local Interactions[J].AIAA Guidance, Navigation, and Control Conference and Exhibit,2005,AIAA 2005-6238:.[5]Peter Wieland, Jung-Su Kim, Holger Scheu and Frank Allg¨owe.On consensus in multi-agent systems with linear high-order agents[J].IFAC'08,2008,:.[6]Ji-Dong JIn, Yu-Fan Zheng.The Consensus of Multi-Agent System Under Directed Network- A Matrix Analysis Approach[J].ICCA 09,2009,:.[7]R. A. Horn and C. R. Johnson.Matrix Analysis[J].Cambridge University Press,1991,:.[8]柳柏濂.组合矩阵论 (第二版)[J].科学出版社,2005,:.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133