全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于交叉熵算法的PID控制器设计

, PP. 794-796

Keywords: 交叉熵,优化,PID,控制器

Full-Text   Cite this paper   Add to My Lib

Abstract:

交叉熵优化方法是一种新型高效的随机优化算法,算法控制参数简单,鲁棒性强.将交叉熵优化算法用于PID控制器的参数设计,并与基于遗传算法的PID控制器设计进行对比,结果表明,交叉熵优化算法不仅所获结果较优,而且计算复杂度也明显小于遗传算法.

References

[1]  参考文献: M. Iruthayarajan and S. Willjuice Baskar, Optimization of PID parameters using Genetic Algorithm and Particle Swarm Optimization, IET-UK International Conference on Information and Communication Technology in Electrical Sciences (ICTES 2007), 2007, pp. 81-86. [2] Zdravko I. Botev and Dirk P. Kroese, The Generalized Cross Entropy Method, with Applications to Probability Density Estimation, Methodology and Computing in Applied Probability, 2009. [3] Zdravko I. Botev and Dirk P. Kroese, An Efficient Algorithm for Rare-event Probability Estimation, Combinatorial Optimization, and Counting, Methodology and Computing in Applied Probability, vol. 10, 2008, pp. 471-505. [4] Botev, Z. I., Kroese, D.P., Taimre, T., Generalized Cross-Entropy Methods with Applications to Rare-Event simulation and Optimization. Simulation, vol. 83, 2007, pp.785 - 806. [5] 陈祥光,遗传算法在PID控制器参数寻优中的应用研究 -计算机仿真2001,18(2). [6] 贺远华,方彦军,遗传算法在模糊控制器参数寻优中的应用研究 -电力自动化设备2002,22(12). [7] 赵亮,付兴武,徐广明,基于遗传算法的PID控制及其MATLAB仿真.微计算机信息,2004,20(5). [8] 陈丹,方康玲,陈乔礼,遗传算法在PID参数优化中的应用,微计算机信息, 2007,23(07). [9] D. P. Kroese, R. Y Rubinstein and S. Porotsky, The Cross-Entropy Method for Continuous Multiextremal Optimization Methodology and Computing in Applied Probability, 8, 2006, pp.383-407. [10] R. Y Rubinstein and D. P. Kroese. The Cross-Entropy Method: A Unified Approach to Monte Carlo Simulation, Randomized Optimization and Machine Learning. Springer Verlag, 2004.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133