Rosenbrock H H. An automatic method for finding the greatest or least value of a function[J]. Computer J, 1960, 3(3): 175-184. [2] Bazaraa M S, Shetty C M. Nonlinear programming: Theory and algorithms[M]. New York: Wiley, 1979. [3] Kennedy J, Eberhart R C. Particle swarm optimization[C]. Proc of the IEEE Int Conf on Neural Networks. Piscataway, 1995: 1942-1948. [4] Kennedy J, Eberhart R C, Shi Y. Swarm intelligence[M]. San Francisco: Morgan Kaufman Publishers, 2001. [5] 陈宝林. 最优化理论与算法[M]. 2版. 北京: 清华大学出 版社, 2005. (Chen B L. Optimization theory and algorithms [M]. 2nd ed. Beijing: Tsinghua University Press, 2005.) [6] Eberhart R C, Shi Y. Comparing inertia weights and constriction factors in particle swarm optimization[C]. Proc 2000 Conf Evolutionary Computation. San Diego, 2000: 84-88. [7] Clerc M, Kennedy J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space[J]. IEEE Trans on Evolutionary Computation, 2002, 6(1): 58-73. [8] Carlisle A, Dozier G. An off-the-shelf PSO[C]. Proc of the Workshop on Particle Swarm Optimization. Indianapolis, 2001: 1-6. [9] 张勇, 巩敦卫, 张婉秋. 一种基于单纯形法的改进微粒群 优化算法及其收敛性分析[J]. 自动化学报, 2009, 35(3): 289-298. (Zhang Y, Gong DW, ZhangWQ. A simplex method based improved particle swarm optimization and analysis on its global convergence[J]. Acta Automatica Sinica, 2009, 35(3): 289-298.) [10] Xin Bin, Chen Jie, Peng Zhihong, et al. An adaptive hybrid optimizer based on particle swarm and differential evolution for goal optimization[J]. Science China Information Sciences, 2010, 53(5): 980-989. [11] 刘国志, 苗晨. Powell搜索法和局部收缩微粒群算法的 混合算法[J]. 辽宁石油化工大学学报, 2008, 28(3): 70- 74. (Liu G Z, Miao C. Hybrid powell search and the local constrain approach particle swarm optimization with linear varying inertia weight for unconstrained optimization[J]. J of Liaoning University of Petroleum