Brest J, Greiner S, Bokovi B, et al. Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems[J]. IEEE Trans on Evolutionary Computation, 2006, 10(6): 646-657. [2] Kaelo P, Ali M M. Differential evolution algorithms using hybrid mutation[J]. Computational Optimization and Applications, 2007, 37(2): 231-246. [3] Brest J, Boskovic B, Greiner S, et al. Performance comparison of self-adaptive and adaptive differential evolution algorithms[J]. Soft Computing, 2007, 11(7): 617-629. [4] Noman N, Iba H. Accelerating differential evolution using an adaptive local search[J]. IEEE Trans on Evolutionary Computation, 2008, 12(1): 107-125. [5] Qin A K, Huang V L, Suganthan P N. Differential evolution algorithm with strategy adaptation for global numerical optimization[J]. IEEE Trans on Evolutionary Computation, 2009, 13(2): 398-417. [6] 潘晓英, 刘芳, 焦李成. 基于智能体的多目标社会进化算 法[J]. 软件学报, 2009, 20(7): 1703-1713. (Pan X Y, Liu F, Jiao L C. Multiobjective social evolutionary algorithm based on multi-agent[J]. J of Software, 2009, 20(7): 1703-1713.) [7] 闫杨, 汪定伟, 王大志, 等. 求解动态背包问题的多智能 体进化算法[J]. 东北大学学报: 自然科学版, 2009, 30(7): 948-951. (Yan Y, Wang D W, Wang D Z, et al. Multiagent-based evolutionary algorithm for dynamic knapsack problem[J]. J of Northeastern University: Natural Science, 2009, 30(7): 948-951.) [8] 黄永青, 陆青, 梁昌勇, 等. 交互式多智能体进化算法及 其应用[J]. 系统仿真学报, 2006, 18(7): 2030-3032. (Huang Y Q, Lu Q, Liang C Y, et al. Interactive multi-agent evolutionary algorithm and its application[J]. J of System Simulation, 2006, 18(7): 2030-3032.) [9] 钟伟才, 薛明志, 刘静, 等. 多智能体遗传算法用于超高 维函数优化[J]. 自然科学进展, 2003, 13(10): 1078-1083. (Zhong W C, Xue M Z, Liu J, et al. Multi-agent genetic algorithm for high-dimensional optimization[J]. Progress in Natural Science, 2003, 13(10): 1078-1083.) [10] Storn R, Price K V. Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces[J]. J of Global Optimization, 1997, 11(4): 341-359. [11] Yiu-Wing Leung, Wang Yuping. An orthogonal genetic algorithm with quantization for global numerical optimization[J]. IEEE Trans on Evolutionary Computation, 2001, 5(1): 41-53. [12] Wang Yuping, Dang Chuangyin. An evolutionary algorithm for global optimization based on level-set evolution and latin squares[J]. IEEE Trans on Evolutionary Computation, 2007, 11(5): 579-595. [13] ChangYong Lee, Yao Xin. Evolutionary programming using mutations based on the levy probability distribution[J]. IEEE Trans on Evolutionary Computation, 2004, 8(1): 1-13. [14] Asanga Ratnaweera, Saman K Halgamuge, Harry C Watson. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients[J]. IEEE Trans on Evolutionary Computation, 2004, 8(3): 240-255. [15] Frans van den Bergh, Andries P Engelbrecht. A cooperative approach to particle swarm optimization[J]. IEEE Trans on Evolutionary Computation, 2004, 8(3): 225-239. [16] Yao Xin, Liu Yong Liu, Lin Guangming. Evolutionary programming made faster[J]. IEEE Trans on Evolutionary Computation, 1999, 3(2): 82-102. [17] Jinn-Tsong Tsai, Tung-Kuan Liu, Jyh-Horng Chou. Hybrid Taguchi-genetic algorithm for global numerical optimization[J]. IEEE Trans on Evolutionary Computation, 2004, 8(4): 365-377. [18] Zhang Qingfu, Sun Jianyong, Edward Tsang, et al. Hybrid estimation of distribution algorithm for global optimization[J]. Engineering Computations, 2004, 21(1): 91-107. [19] 王湘中, 喻寿益. 适用于高维优化问题的改进进化策 略[J]. 控制理论与应用, 2005, 23(1): 148-151. (Wang X Z, Yu S Y. Improved evolution strategies for high-dimensional optimization[J]. Control Theory