全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种基于粒子群参数优化的改进蚁群算法

, PP. 873-878

Keywords: 粒子群算法,改进蚁群算法,迭代代数,旅行商问题

Full-Text   Cite this paper   Add to My Lib

Abstract:

蚁群算法是一种应用广泛、性能优良的智能优化算法,其求解效果与参数选取息息相关.鉴于此,针对现有基于粒子群参数优化的改进蚁群算法耗时较大的问题,提出一种新的解决方案.该方案给出一种全局异步与精英策略相结合的信息素更新方式,且通过大量统计实验可以在较大程度上减少蚁群算法被粒子群算法调用一次所需的迭代代数.仿真实验表明,所提出算法在求解较大规模旅行商问题时具有明显的速度优势.

References

[1]  A. Colorni, M. Dorigo, V. Maniezzo. Distributed optimization by ant colonies[A]. Proceedings of European Conference on Artificial Life (ECAL91) [C], Paris, 1991: 134~142.
[2]  T.Stützle, H.Hoos.Improvements on the ant system: Introducing MAX–MIN ant system[A].Proceedings of the International Conference on Artificial Neural Networks and Genetic Algorithms[C], Norwich, 1997: 245~249.
[3]  R.C.Eberhart, J.Kennedy. A new optimizer using particles swarm theory[A]. Proeeedings of Sixth International Symposium on Micro Machine and Human Science[C], Nagoya, 1995:39~43.
[4]  (B.J.Chai, D.W.Liu. Application of an Ant Colony Algorithm in TSP Based on Particle Swarm[J]. Computer Simulation, 2009, 26(8): 89~91.)
[5]  夏辉,王华,陈熙.一种基于微粒群思想的蚁群参数自适应优化算法[J].山东大学学报(工学版),2010,40(3):26~30.
[6]  (Y.N.Yang. The parameter optimization of Ant Colony Algorithm and its application[D]. Nanjing University of Science and Technology. 2008.)
[7]  A. Colorni, M. Dorigo, V. Maniezzo. An investigation of some properties of an “Ant algorithm”[A]. Proceedings of the Parallel Problem Solving From Nature Conference (PPSN92) [C], Brussels, 1992: 509~520.
[8]  M. Dorigo, V. Maniezzo, A. Colorni. The ant system: Optimization by a colony of cooperating agents [J]. IEEE Trans. on Systems, Man, and Cybernetics-Part B, 1996, 26(1): 29~41.
[9]  M. Dorigo, L. M. Gambardella. Ant colony system: A cooperative learning approach to the traveling salesman problem [J]. IEEE Trans. on Evolutionary Computation, 1997, 1(1): 53~56
[10]  J.Kennedy, R.C.Eberhart. Particle swarm optimization[A]. Proceedings of IEEE International Conference on Neural Networks[C].Perth, 1995: 1942~1948.
[11]  闵克学, 葛宏伟, 张毅, 梁艳春. 基于蚁群和粒子群优化的混合算法求解TSP问题[J]. 吉林大学学报(信息科学版), 2006, 24(4): 402~405.
[12]  (K.X.Min, H.W.Ge, Y.Zhang, Y.C.Liang. Solving Traveling Salesman Problems by an ACO-and-PSO-Based HybridAlgorithm[J]. Journal of JilinUniversity (Information Science Edition), 2006,24(4): 402~405. )
[13]  柴宝杰,刘大为.基于粒子群优化的蚁群算法在TSP中的应用[J].计算机仿真,2009,26(8):89~91.
[14]  (H.Xia, H Wang, X. Chen. A kind of ant colony parameter adaptive optimization algorithm based on particle swarm optimization thought[J].Journal of ShanDong University (Engineering Science), 2010, 40(3): 26~30.)
[15]  杨亚南.蚁群算法参数优化及其应用[D].南京理工大学.2008

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133