全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
菌物学报  2015 

土施糖类对丛枝菌根真菌侵染率和产孢的影响

DOI: DOI:10.13346/j.mycosystema.140045, PP. 394-401

Keywords: 摩西球囊霉,番茄,碳源,侵染率,孢子数

Full-Text   Cite this paper   Add to My Lib

Abstract:

丛枝菌根真菌(arbuscularmycorrhizalfungi,AMF)不能进行光合作用,需要宿主植物提供碳水化合物供其完成整个生命周期,添加外源物质调控AMF和宿主植物的关系被认为是一种可行的措施。通过盆栽实验种植番茄,探索土施不同糖类对摩西球囊霉Glomusmosseae的侵染率、产孢能力和功能(宿主植物生长和养分)的影响。结果表明,添加葡萄糖和蔗糖可提高接种了摩西球囊霉的番茄的地上部生物量以及磷、钾吸收量,但对地上部氮吸收量影响不显著;添加麦芽糖和淀粉对地上部生物量及氮磷钾养分吸收量的影响均不显著。添加糖类处理,土壤碱解氮均有下降趋势;土壤速效磷、速效钾随着地上部磷和钾吸收量增加有下降趋势。糖类添加对土壤有机质没有影响。添加不同糖类均提高了AMF的侵染率,其中添加蔗糖处理的侵染率较单独施用摩西球囊霉菌处理增加了114%。单独施用摩西球囊霉菌剂处理土壤孢子数为10个/g,添加葡萄糖和淀粉处理的孢子数均为8个/g,添加蔗糖和麦芽糖处理的孢子数均为11个/g,添加糖类均对AMF产孢无显著影响。

References

[1]  Auge RM, 2001. Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza, 11: 3-42 [本文引用:1]
[2]  Bago B, Pfeffer EP, Douds DD, Brouillette J, Becard G, Shachar-Hill Y, 1999. Carbon metabolism in spores of the arbuscular mycorrhizal fungus Glomus intraradices as revealed by nuclear magnetic resonance spectroscopy. Plant Physiology, 121: 263-271 [本文引用:1]
[3]  Baslam M, Garmendia I, Goicoechea N, 2011. Arbuscular mycorrhizal fungi (AMF) improved growth and nutritional quality of greenhouse-grown lettuce. Journal of Agricultural and Food Chemistry, 59(10): 5504-5515 [本文引用:1]
[4]  Baslam M, Garmendia I, Goicoechea N, 2013. Enhanced accumulation of vitamins, nutraceuticals and minerals in lettuces associated with arbuscular mycorrhizal fungi: a question of interest for both vegetables and humans. Agriculture, 3(1): 188-209 [本文引用:1]
[5]  Bécard G, Piché Y, 1989. Fungal growth stimulation by CO2 and root exudates in the vesicular-arbuscular mycorrhizal symbiosis. Applied and Environmental Microbiology, 55(9): 2320-2325 [本文引用:1]
[6]  Bucking H, Shachar-Hill Y, 2005. Phosphate uptake, transport and transfer by arbuscular mycorrhizal fungus Glomus intraradices is stimulated by increased carbohydrate availability. New Phytologist, 165(3): 899-912 [本文引用:1]
[7]  Chen N, Wang YS, Li XL, Zhang MQ, Xing LJ, Feng G, Ni XH, 2003. The effects of cultivated densities of host plant on the development of arbuscular mycorrhizal fungi. Mycosystema, 22(1): 88-94 (in Chinese) [本文引用:1]
[8]  Fellbaum CR, Gachomo EW, Beesetty Y, Choudhari S, Strahan GD, Pfeffer PE, Kiers ET, Bucking H, 2012. Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis. Proceedings of The National Academy of Sciences of the United States of America, 109(7): 2666-2671 [本文引用:1]
[9]  Feng G, Zhang FS, Li XL, Tian CY, Rengel Z, 2002. Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza, 12: 185-190 [本文引用:1]
[10]  Gampere H, Hartwig UA, Leuchtrrmnn A, 2005. Mycorrhizas improve nitrogen nutrition of Trifolium repens after 8 yr of selection under elevated atmospheric CO2 partial pressure. New Phytologist, 167(2): 531-542 [本文引用:1]
[11]  Guo LD, Tian CJ, 2013. Progress of the function of mycorrhizal fungi in the cycle of carbon and nitrogen. Microbiology China, 40(1): 158-171 (in Chinese) [本文引用:1]
[12]  Giovannetti M, Mosse B, 1980. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytologist, 84: 489-500 [本文引用:1]
[13]  Gryndler M, Vosátka M, Hr?elová H, Chvatalova I, Jansa J, 2002. Interaction between arbuscular mycorrhizal fungi and cellulose in growth substrate. Applied Soil Ecology, 19: 279-288 [本文引用:1]
[14]  Hodge A, Campbell C, Fitter AH, 2001. An arbuscular mycorrhizal fungus accelerates decomposition and acquisition nitrogen directly from organic material. Nature, 413: 297-299 [本文引用:1]
[15]  Jayne B, Quigley M, 2014. Influence of arbuscular mycorrhiza on growth and reproductive response of plants under water deficit: a meta-analysis. Mycorrhiza, 24: 109-119 [本文引用:1]
[16]  Joner EJ, Briones R, Leyval C, 2000. Metal-binding capacity of arbuscular mycorrhizal mycelium. Plant and Soil, 226: 227-234 [本文引用:1]
[17]  Klironomos JN, 2003. Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology, 84: 2292-2301 [本文引用:1]
[18]  Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, 2011. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science, 333(6044): 880-882 [本文引用:1]
[19]  Leifheit EF, Veresoglou SD, Lehmann A, Morris EK, Rillig MC, 2014. Multiple factors influence the role of arbuscular mycorrhizal fungi in soil aggregation-a meta-analysis. Plant and Soil, 374: 523-537 [本文引用:1]
[20]  Lingua G, Agostino G, Massa N, Antosiano M, Berta G, 2002. Mycorrhiza-induced differential response to a yellows disease in tomato. Mycorrhiza, 12: 191-198 [本文引用:1]
[21]  Liu RJ, Chen YL, 2007. Arbuscular mycorrhizal fungi and its application. Science Press, Beijing. 1-224(in Chinese) [本文引用:1]
[22]  Lu RK, 2000. Soil agricultural chemical analysis method. China Agricultural Science and Technology Press, Beijing. 1-315(in Chinese) [本文引用:1]
[23]  Marschner H, Dell B, 1994. Nutrient uptake in mycorrhizal symbiosis. Plant and Soil, 159(1): 89-102 [本文引用:1]
[24]  Pfeffer PE, Douds DD, Becard G, Shachar-Hill Y, 1999. Carbon uptake and the metabolism and transport of lipids in an arbuscular mycorrhiza. Plant Physiology, 120(2): 587-598 [本文引用:1]
[25]  Smith SE, Read DJ, 2008. Mycorrhizal symbiosis. Academic Press, London. 1-800 [本文引用:1]
[26]  Tian MM, Ji CL, Liu J, Liu J, Jin HR, 2011 a. Effects of glucose, root exudates on the assimilation of different forms of nitrogen and production of arginine by arbuscular mycorrhizal fungus. Microbiology China, 38(1): 14-20 (in Chinese) [本文引用:1]
[27]  Tian MM, Liu J, Liu J, Yu XP, Jin HR, 2011 b. Effects of different carbon forms on assimilation of nitrogen and production of arginine by arbuscular mycorrhizal fungus. Plant Nutrition and Fertilizer Science, 17(6): 1495-1499 (in Chinese) [本文引用:1]
[28]  van der Heijden MGA, Streitwolf-Engel R, Riedl R, Siegrist S, Neudecker A, Ineichen K, Boller T, Wiemken A, Sand ers IR, 2006. The mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland . New Phytologist, 172: 739-752 [本文引用:1]
[29]  Yang ZB, Wang MY, Liu RJ, 2005. Influence of exogenous nutrient and hormone on colonization and sporulation of arbuscular mycorrhizal fungi. Mycosystema, 24(2): 277-282 (in Chinese) [本文引用:1]
[30]  Yu JX, Wang WH, Zhang JZ, Guo SX, 2010. Influence of exogenous hormone treatments on colonization, sporulation and function of arbuscular mycorrhizal fungi. Journal of Qingdao Agricultural University (Natural Science), 27(4): 274-276 [本文引用:1]
[31]  陈宁, 王幼珊, 李晓林, 张美庆, 邢礼军, 冯固, 倪小会, 2003. 寄主植物栽培密度对AM真菌生长发育的影响. 菌物系统, 22(1): 88-94 [本文引用:1]
[32]  郭良栋, 田春杰, 2013. 菌根真菌的碳氮循环功能研究进展. 微生物学通报, 40(1): 158-171 [本文引用:1]
[33]  鲁如坤, 2000. 土壤农业化学分析方法. 北京: 中国农业科技出版社. 1-315 [本文引用:2]
[34]  刘润进, 陈应龙, 2007. 丛枝菌根及其应用. 北京: 科学出版社. 1-224 [本文引用:1]
[35]  田萌萌, 吉春龙, 刘洁, 刘静, 金海如, 2011 a. 葡萄糖、根浸出液对丛枝菌根吸收不同外源氮产生精氨酸的影响. 微生物学通报, 38(1): 14-20 [本文引用:1]
[36]  田萌萌, 刘静, 刘洁, 于向鹏, 金海如, 2011 b. 不同外源碳对AM真菌吸收氮源合成精氨酸的影响. 植物营养与肥料学报, 17(6): 1495-1499 [本文引用:1]
[37]  杨中宝, 王淼焱, 刘润进, 2005. 外源养分和激素对AM真菌侵染和产孢的影响. 菌物学报, 24(2): 277-282 [本文引用:2]
[38]  于建新, 王维华, 张金政, 郭绍霞, 2010. 外施激素对AM真菌侵染、产孢和功能的影响. 青岛农业大学学报(自然科学版), 27(4): 274-276 [本文引用:1]

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133