24 da Silva Ferreira ME, Capellaro JL, dos Reis Marques E, Malavazi I, Perlin D, Park S, Anderson JB, Colombo AL, Arthington-Skaggs BA, Goldman MHS, Goldman GH, 2004. In vitro evolution of itraconazole resistance in Aspergillus fumigatus involves multiple mechanisms of resistance. Antimicrobial Agents and Chemotherapy, 48(11): 4405-4413 [本文引用:
[2]
25 de Nadal E, Ammerer G, Posas F, 2011. Controlling gene expression in response to stress. Nature Reviews Genetics, 12(12): 833-845 [本文引用:
[3]
26 Diaz-Guerra TM, Mellado E, Cuenca-Estrella M, Rodriguez-Tudela JL, 2003. A point mutation in the 14α-sterol demethylase gene cyp51A contributes to itraconazole resistance in Aspergillus fumigatus. Antimicrobial Agents and Chemotherapy, 47(3): 1120-1124 [本文引用:
[4]
27 Dichtl K, Helmschrott C, Dirr F, Wagener J, 2012. Deciphering cell wall integrity signalling in Aspergillus fumigatus: identification and functional characterization of cell wall stress sensors and relevant Rho GTPases. Molecular Microbiology, 83(3): 506-519 [本文引用:
[5]
28 Dirr F, Echtenacher B, Heesemann J, Hoffmann P, Ebel F, Wagener J, 2010. AfMkk2 is required for cell wall integrity signaling, adhesion, and full virulence of the human pathogen Aspergillus fumigatus. International Journal of Medical Microbiology, 300(7): 496-502 [本文引用:
[6]
29 Du WJ, Coaker M, Sobel J, Akins R, 2004. Shuttle vectors for Cand ida albicans: control of plasmid copy number and elevated expression of cloned genes. Current Genetics, 45(6): 390-398 [本文引用:
[7]
30 Dunkel N, Liu TT, Barker KS, Homayouni R, Morschh?user J, Rogers PD, 2008. A gain-of-function mutation in the transcription factor Upc2p causes upregulation of ergosterol biosynthesis genes and increased fluconazole resistance in a clinical Cand ida albicans isolate. Eukaryotic Cell, 7(7): 1180-1190 [本文引用:
[8]
31 Edlind T, Smith L, Henry K, Katiyar S, Nickels J, 2002. Antifungal activity in Saccharomyces cerevisiae is modulated by calcium signalling. Molecular Microbiology, 46(1): 257-268 [本文引用:
[9]
32 Edlind TD, Henry KW, Metera KA, Katiyar SK, 2001. Aspergillus fumigatus CYP51 sequence: potential basis for fluconazole resistance. Medical Mycology, 39(3): 299-302 [本文引用:
[10]
33 Ferreira GF, Baltazar LD, Santos JRA, Monteiro AS, Fraga LAD, Resende-Stoianoff MA, Santos DA, 2013. The role of oxidative and nitrosative bursts caused by azoles and amphotericin B against the fungal pathogen Cryptococcus gattii. Journal of Antimicrobial Chemotherapy, 68(8): 1801-1811 [本文引用:
[11]
34 Ferreira M, Malavazi I, Savoldi M, Brakhage A, Goldman M, Kim HS, Nierman W, Goldman G, 2006. Transcriptome analysis of Aspergillus fumigatus exposed to voriconazole. Current Genetics, 50(1): 32-44 [本文引用:
[12]
35 Flowers SA, Barker KS, Berkow EL, Toner G, Chadwick SG, Gygax SE, Morschh?user J, Rogers PD, 2012. Gain-of-function mutations in UPC2 are a frequent cause of ERG11 upregulation in azole-resistant clinical isolates of Cand ida albicans. Eukaryotic Cell, 11(10): 1289-1299 [本文引用:
[13]
36 Fran?ois IEJA, Bink A, Vand ercappellen J, Ayscough KR, Toulmay A, Schneiter R, van Gyseghem E, Van den Mooter G, Borgers M, Vand enbosch D, Coenye T, Cammue BPA, Thevissen K, 2009. Membrane rafts are involved in intracellular miconazole accumulation in yeast cells. Journal of Biological Chemistry, 284(47): 32680-32685 [本文引用:
38 He XX, Li SN, Kaminskyj SGW, 2014. Using Aspergillus nidulans to identify antifungal drug resistance mutations. Eukaryotic Cell, 13(2): 288-294 [本文引用:
[16]
39 Heath VL, Shaw SL, Roy S, Cyert MS, 2004. Hph1p and Hph2p, novel components of calcineurin-mediated stress responses in Saccharomyces cerevisiae. Eukaryotic Cell, 3(3): 695-704 [本文引用:
[17]
40 Heilmann CJ, Schneider S, Barker KS, Rogers PD, Morschh?user J, 2010. An A643T mutation in the transcription factor Upc2p causes constitutive ERG11 upregulation and increased fluconazole resistance in Cand ida albicans. Antimicrobial Agents and Chemotherapy, 54(1): 353-359 [本文引用:
[18]
41 Heusinkveld HJ, Molendijk J, van den Berg M, Westerink RHS, 2013. Azole fungicides disturb intracellular Ca2+ in an additive manner in dopaminergic PC12 cells. Toxicological Sciences, 134(2): 374-381 [本文引用:
[19]
42 Hoehamer CF, Cummings ED, Hilliard GM, Rogers PD, 2010. Changes in the proteome of Cand ida albicans in response to azole, polyene, and echinocand in antifungal agents. Antimicrobial Agents and Chemotherapy, 54(5): 1655-1664 [本文引用:
[20]
43 Howard SJ, Cerar D, Anderson MJ, Albarrag A, Fisher MC, Pasqualotto AC, Laverdiere M, Arendrup MC, Perlin DS, Denning DW, 2009. Frequency and evolution of azole resistance in Aspergillus fumigatus associated with treatment failure. Emerging Infectious Diseases, 15(7): 1068-1076 [本文引用:
[21]
44 Itokawa D, Nishioka T, Fukushima J, Yasuda T, Yamauchi A, Chuman H, 2007. Quantitative structure-activity relationship study of binding affinity of azole compounds with CYP2B and CYP3A. QSAR & Combinatorial Science, 26(7): 828-836 [本文引用:
[22]
45 Jain P, Akula I, Edlind T, 2003. Cyclic AMP signaling pathway modulates susceptibility of Cand ida species and Saccharomyces cerevisiae to antifungal azoles and other sterol biosynthesis inhibitors. Antimicrobial Agents and Chemotherapy, 47(10): 3195-3201 [本文引用:
[23]
46 Kafadar KA, Cyert MS, 2004. Integration of stress responses: modulation of calcineurin signaling in Saccharomyces cerevisiae by protein kinase A. Eukaryotic Cell, 3(5): 1147-1153 [本文引用:
[24]
47 Kelly SL, Lamb DC, Baldwin BC, Corran AJ, Kelly DE, 1997. Characterization of Saccharomyces cerevisiae CYP61, sterol ?22-desaturase, and inhibition by azole antifungal agents. Journal of Biological Chemistry, 272(15): 9986-9988 [本文引用:
[25]
48 Kelly SL, Lamb DC, Corran AJ, Baldwin BC, Kelly DE, 1995. Mode of action and resistance to azole antifungals associated with the formation of 14α-methylergosta- 8, 24(28)-dien-3β, 6α-diol. Biochemical and Biophysical Research Communications, 207(3): 910-915 [本文引用:
[26]
49 Ko YJ, Yu YM, Kim GB, Lee GW, Maeng PJ, Kim S, Floyd A, Heitman J, Bahn YS, 2009. Remodeling of global transcription patterns of Cryptococcus neoformans genes mediated by the stress-activated HOG signaling pathways. Eukaryotic Cell, 8(8): 1197-1217 [本文引用:
[27]
50 Kobayashi D, Kondo K, Uehara N, Otokozawa S, Tsuji N, Yagihashi A, Watanabe N, 2002. Endogenous reactive oxygen species is an important mediator of miconazole antifungal effect. Antimicrobial Agents and Chemotherapy, 46(10): 3113-3117 [本文引用:
[28]
51 Kontoyiannis DP, 2000. Modulation of fluconazole sensitivity by the interaction of mitochondria and Erg3p in Saccharomyces cerevisiae. Journal of Antimicrobial Chemotherapy, 46(2): 191-197 [本文引用:
[29]
52 Kumamoto CA, 2005. A contact-activated kinase signals Cand ida albicans invasive growth and biofilm development. Proceedings of the National Academy of Sciences of the United States of America, 102(15): 5576-5581 [本文引用:
[30]
53 LaFayette SL, Collins C, Zaas AK, Schell WA, Betancourt-Quiroz M, Gunatilaka AAL, Perfect JR, Cowen LE, 2010. PKC signaling regulates drug resistance of the fungal pathogen Cand ida albicans via circuitry comprised of Mkc1, calcineurin, and Hsp90. PLoS Pathogens, 6(8): e1001069 [本文引用:
[31]
54 Lamoth F, Juvvadi PR, Soderblom EJ, Moseley MA, Asfaw YG, Steinbach WJ, 2014. Identification of a key lysine residue in heat shock protein 90 required for azole and echinocand in resistance in Aspergillus fumigatus. Antimicrobial Agents and Chemotherapy, 58(4): 1889-1896 [本文引用:
[32]
55 Lee H, Khanal Lamichhane A, Garraffo HM, Kwon-Chung KJ, Chang YC, 2012. Involvement of PDK1, PKC and TOR signalling pathways in basal fluconazole tolerance in Cryptococcus neoformans. Molecular Microbiology, 84(1): 130-146 [本文引用:
[33]
56 Leonard GD, Polgar O, Bates SE, 2002. ABC transporters and inhibitors: new targets, new agents. Current Opinion in Investigational Drugs, 3(11): 1652-1659 [本文引用:
[34]
57 Liu TT, Lee REB, Barker KS, Lee RE, Wei L, Homayouni R, Rogers PD, 2005. Genome-wide expression profiling of the response to azole, polyene, echinocand in, and pyrimidine antifungal agents in Cand ida albicans. Antimicrobial Agents and Chemotherapy, 49(6): 2226-2236 [本文引用:
[35]
58 Liu X, Jiang JH, Shao JF, Yin YN, Ma ZH, 2010. Gene transcription profiling of Fusarium graminearum treated with an azole fungicide tebuconazole. Applied Microbiology and Biotechnology, 85(4): 1105-1114 [本文引用:
60 Mann PA, Parmegiani RM, Wei SQ, Mendrick CA, Li X, Loebenberg D, DiDomenico B, Hare RS, Walker SS, McNicholas PM, 2003. Mutations in Aspergillus fumigatus resulting in reduced susceptibility to posaconazole appear to be restricted to a single amino acid in the cytochrome P450 14α-demethylase. Antimicrobial Agents and Chemotherapy, 47(2): 577-581 [本文引用:
[38]
61 Mansfield BE, Oltean HN, Oliver BG, Hoot SJ, Leyde SE, Hedstrom L, White TC, 2010. Azole drugs are imported by facilitated diffusion in Cand ida albicans and other pathogenic fungi. PLoS Pathogens, 6(9): e1001126 [本文引用:
[39]
62 Marichal P, Koymans L, Willemsens S, Bellens D, Verhasselt P, Luyten W, Borgers M, Ramaekers FCS, Odds FC, Vand en Bossche H, 1999. Contribution of mutations in the cytochrome P450 14α-demethylase (Erg11p, Cyp51p) to azole resistance in Cand ida albicans. Microbiology, 145(10): 2701-2713 [本文引用:
[40]
63 Marr KA, Lyons CN, Rustad T, Bowden RA, White TC, 1998. Rapid, transient fluconazole resistance in Cand ida albicans is associated with increased mRNA levels of CDR. Antimicrobial Agents and Chemotherapy, 42(10): 2584-2589 [本文引用:
[41]
64 Mast N, Zheng W, Stout CD, Pikuleva IA, 2013. Antifungal azoles: structural insights into undesired tight binding to cholesterol-metabolizing CYP46A1. Molecular Pharmacology, 84(1): 86-94 [本文引用:
[42]
65 McNeil MM, Nash SL, Hajjeh RA, Phelan MA, Conn LA, Plikaytis BD, Warnock DW, 2001. Trends in mortality due to invasive mycotic diseases in the United States, 1980-1997. Clinical Infectious Diseases, 33(5): 641-647 [本文引用:
[43]
1 Abe F, Usui K, Hiraki T, 2009. Fluconazole modulates membrane rigidity, heterogeneity, and water penetration into the plasma membrane in Saccharomyces cerevisiae. Biochemistry, 48(36): 8494-8504 [本文引用:
[44]
2 Agarwal AK, Rogers PD, Baerson SR, Jacob MR, Barker KS, Cleary JD, Walker LA, Nagle DG, Clark AM, 2003. Genome-wide expression profiling of the response to polyene, pyrimidine, azole, and echinocand in antifungal agents in Saccharomyces cerevisiae. Journal of Biological Chemistry, 278(37): 34998-35015 [本文引用:
[45]
3 Akache B, MacPherson S, Sylvain MA, Turcotte B, 2004. Complex interplay among regulators of drug resistance genes in Saccharomyces cerevisiae. Journal of Biological Chemistry, 279(27): 27855-27860 [本文引用:
[46]
4 Alarco AM, Balan I, Talibi D, Mainville N, Raymond M, 1997. AP1-mediated multidrug resistance in Saccharomyces cerevisiae requires FLR1 encoding a transporter of the major facilitator superfamily. Journal of Biological Chemistry, 272(31): 19304-19313 [本文引用:
[47]
5 Ascioglu S, Rex JH, de Pauw B, Bennett JE, Bille J, Crokaert F, Denning DW, Donnelly JP, Edwards JE, Erjavec Z, Fiere D, Lortholary O, Maertens J, Meis JF, Patterson TF, Ritter J, Selleslag D, Shah PM, Stevens DA, Walsh TJ, 2002. Defining opportunistic invasive fungal infections in immunocompromised patients with cancer and hematopoietic stem cell transplants: an international consensus. Clinical Infectious Diseases, 34(1): 7-14 [本文引用:
[48]
6 Bien CM, Espenshade PJ, 2010. Sterol regulatory element binding proteins in fungi: hypoxic transcription factors linked to pathogenesis. Eukaryotic Cell, 9(3): 352-359 [本文引用:
[49]
7 Bink A, Govaert G, Vand enbosch D, Kuchariková S, Coenye T, Nelis H, Van Dijck P, Cammue BPA, Thevissen K, 2012. Transcription factor Efg1 contributes to the tolerance of Cand ida albicans biofilms against antifungal agents in vitro and in vivo. Journal of Medical Microbiology, 61(Pt 6): 813-819 [本文引用:
[50]
8 Blatzer M, Barker BM, Willger SD, Beckmann N, Blosser SJ, Cornish EJ, Mazurie A, Grahl N, Haas H, Cramer RA, 2011. SREBP coordinates iron and ergosterol homeostasis to mediate triazole drug and hypoxia responses in the human fungal pathogen Aspergillus fumigatus. PLoS Genetics, 7(12): e1002374 [本文引用:
[51]
9 Borah S, Shivarathri R, Kaur R, 2011. The Rho1 GTPase-activating protein CgBem2 is required for survival of azole stress in Cand ida glabrata. Journal of Biological Chemistry, 286(39): 34311-34324 [本文引用:
[52]
10 Bruno VM, Mitchell AP, 2005. Regulation of azole drug susceptibility by Cand ida albicans protein kinase CK2. Molecular Microbiology, 56(2): 559-573 [本文引用:
[53]
11 Camps SMT, Dutilh BE, Arendrup MC, Rijs AJMM, Snelders E, Huynen MA, Verweij PE, Melchers WJG, 2012. Discovery of a hapE mutation that causes azole resistance in Aspergillus fumigatus through whole genome sequencing and sexual crossing. PLoS One, 7(11): e50034 [本文引用:
[54]
12 Cannon RD, Lamping E, Holmes AR, Niimi K, Tanabe K, Niimi M, Monk BC, 2007. Cand ida albicans drug resistance - another way to cope with stress. Microbiology, 153(10): 3211-3217 [本文引用:
[55]
13 Chang YC, Bien CM, Lee H, Espenshade PJ, Kwon-Chung KJ, 2007. Sre1p, a regulator of oxygen sensing and sterol homeostasis, is required for virulence in Cryptococcus neoformans. Molecular Microbiology, 64(3): 614-629 [本文引用:
[56]
14 Chang YC, Ingavale SS, Bien C, Espenshade P, Kwon-Chung KJ, 2009. Conservation of the sterol regulatory element-binding protein pathway and its pathobiological importance in Cryptococcus neoformans. Eukaryotic Cell, 8(11): 1770-1779 [本文引用:
[57]
15 Chen KH, Miyazaki T, Tsai H, Bennett JE, 2007. The bZIP transcription factor Cgap1p is involved in multidrug resistance and required for activation of multidrug transporter gene CgFLR1 in Cand ida glabrata. Gene, 386(1-2): 63-72 [本文引用:
[58]
16 Cools HJ, Hawkins NJ, Fraaije BA, 2013. Constraints on the evolution of azole resistance in plant pathogenic fungi. Plant Pathology, 62: 36-42 [本文引用:
[59]
17 Coste AT, Karababa M, Ischer F, Bille J, Sanglard D, 2004. TAC1, transcriptional activator of CDR genes, is a new transcription factor involved in the regulation of Cand ida albicans ABC transporters CDR1 and CDR2. Eukaryotic Cell, 3(6): 1639-1652 [本文引用:
[60]
18 Cowen LE, 2013. The fungal achilles’ heel: targeting Hsp90 to cripple fungal pathogens. Current Opinion in Microbiology, 16(4): 377-384 [本文引用:
[61]
19 Cowen LE, Lindquist S, 2005. Hsp90 potentiates the rapid evolution of new traits: drug resistance in diverse fungi. Science, 309(5744): 2185-2189 [本文引用:
[62]
20 Cowen LE, Singh SD, K?hler JR, Collins C, Zaas AK, Schell WA, Aziz H, Mylonakis E, Perfect JR, Whitesell L, Lindquist S, 2009. Harnessing Hsp90 function as a powerful, broadly effective therapeutic strategy for fungal infectious disease. Proceedings of the National Academy of Sciences, 106(8): 2818-2823 [本文引用:
[63]
21 Cruz MC, Goldstein AL, Blankenship JR, Del Poeta M, Davis D, Cardenas ME, Perfect JR, McCusker JH, Heitman J, 2002. Calcineurin is essential for survival during membrane stress in Cand ida albicans. EMBO Journal, 21(4): 546-559 [本文引用:
[64]
22 Cuenca-Estrella M, Gomez-Lopez A, Garcia-Effron G, Alcazar-Fuoli L, Mellado E, Buitrago MJ, Rodriguez-Tudela JL, 2005. Combined activity in vitro of caspofungin, amphotericin B, and azole agents against itraconazole-resistant clinical isolates of Aspergillus fumigatus. Antimicrobial Agents and Chemotherapy, 49(3): 1232-1235 [本文引用:
[65]
23 Culakova H, Dzugasova V, Perzelova J, Gbelska Y, Subik J, 2013. Mutation of the CgPDR16 gene attenuates azole tolerance and biofilm production in pathogenic Cand ida glabrata. Yeast, 30(10): 403-414 [本文引用:
[66]
66 Mellado E, Garcia-Effron G, Alcázar-Fuoli L, Melchers WJG, Verweij PE, Cuenca-Estrella M, Rodríguez-Tudela JL, 2007. A new Aspergillus fumigatus resistance mechanism conferring in vitro cross-resistance to azole antifungals involves a combination of cyp51A alterations. Antimicrobial Agents and Chemotherapy, 51(6): 1897-1904 [本文引用:
[67]
67 Micheli Md, Bille J, Schueller C, Sanglard D, 2002. A common drug-responsive element mediates the upregulation of the Cand ida albicans ABC transporters CDR1 and CDR2, two genes involved in antifungal drug resistance. Molecular Microbiology, 43(5): 1197-1214 [本文引用:
[68]
68 Morschh?user J, Barker KS, Liu TT, Bla?-Warmuth J, Homayouni R, Rogers PD, 2007. The transcription factor Mrr1p controls expression of the MDR1 efflux pump and mediates multidrug resistance in Cand ida albicans. PLoS Pathogens, 3(11): e164 [本文引用:
[69]
69 Mukherjee PK, Chand ra J, Kuhn DM, Ghannoum MA, 2003. Mechanism of fluconazole resistance in Cand ida albicans biofilms: phase-specific role of efflux pumps and membrane sterols. Infection and Immunity, 71(8): 4333-4340 [本文引用:
[70]
70 Nakaune R, Adachi K, Nawata O, Tomiyama M, Akutsu K, Hibi T, 1998. A novel ATP-binding cassette transporter involved in multidrug resistance in the phytopathogenic fungus Penicillium digitatum. Applied and Environmental Microbiology, 64(10): 3983-3988 [本文引用:
[71]
71 Nascimento AM, Goldman GH, Park S, Marras SAE, Delmas G, Oza U, Lolans K, Dudley MN, Mann PA, Perlin DS, 2003. Multiple resistance mechanisms among Aspergillus fumigatus mutants with high-level resistance to itraconazole. Antimicrobial Agents and Chemotherapy, 47(5): 1719-1726 [本文引用:
[72]
72 Nett J, Lincoln L, Marchillo K, Massey R, Holoyda K, Hoff B, VanHand el M, Andes D, 2007. Putative role of β-1, 3 glucans in Cand ida albicans biofilm resistance. Antimicrobial Agents and Chemotherapy, 51(2): 510-520 [本文引用:
[73]
73 Noble JA, Tsai HF, Suffis SD, Su Q, Myers TG, Bennett JE, 2013. STB5 is a negative regulator of azole resistance in Cand ida glabrata. Antimicrobial Agents and Chemotherapy, 57(2): 959-967 [本文引用:
[74]
74 Perea S, López-Ribot JL, Kirkpatrick WR, McAtee RK, Santillán RA, Mart??nez M, Calabrese D, Sanglard D, Patterson TF, 2001. Prevalence of molecular mechanisms of resistance to azole antifungal agents in Cand ida albicans strains displaying high-level fluconazole resistance isolated from human immunodeficiency virus-infected patients. Antimicrobial Agents and Chemotherapy, 45(10): 2676-2684 [本文引用:
[75]
75 Perea S, López-Ribot JL, Wickes BL, Kirkpatrick WR, Dib OP, Bachmann SP, Keller SM, Martinez M, Patterson TF, 2002. Molecular mechanisms of fluconazole resistance in Cand ida dubliniensis isolates from human immunodeficiency virus-infected patients with oropharyngeal cand idiasis. Antimicrobial Agents and Chemotherapy, 46(6): 1695-1703 [本文引用:
[76]
76 Prasad R, Wergifosse P, Goffeau A, Balzi E, 1995. Molecular cloning and characterization of a novel gene of Cand ida albicans, CDR1, conferring multiple resistance to drugs and antifungals. Current Genetics, 27(4): 320-329 [本文引用:
[77]
77 Prasad T, Hameed S, Manoharlal R, Biswas S, Mukhopadhyay CK, Goswami SK, Prasad R, 2010. Morphogenic regulator EFG1 affects the drug susceptibilities of pathogenic Cand ida albicans. FEMS Yeast Research, 10(5): 587-596 [本文引用:
[78]
78 Qiao JJ, Liu W, Li RY, 2010. Truncated Afyap1 attenuates antifungal susceptibility of Aspergillus fumigatus to voriconazole and confers adaptation of the fungus to oxidative stress. Mycopathologia, 170(3): 155-160 [本文引用:
[79]
79 Rajendran R, Mowat E, McCulloch E, Lappin DF, Jones B, Lang S, Majithiya JB, Warn P, Williams C, Ramage G, 2011. Azole resistance of Aspergillus fumigatus biofilms is partly associated with efflux pump activity. Antimicrobial Agents and Chemotherapy, 55(5): 2092-2097 [本文引用:
[80]
80 Redding SW, Kirkpatrick WR, Saville S, Coco BJ, White W, Fothergill A, Rinaldi M, Eng T, Patterson TF, Lopez-Ribot J, 2003. Multiple patterns of resistance to fluconazole in Cand ida glabrata isolates from a patient with oropharyngeal cand idiasis receiving head and neck radiation. Journal of Clinical Microbiology, 41(2): 619-622 [本文引用:
[81]
81 Sanglard D, Coste A, Ferrari S, 2009. Antifungal drug resistance mechanisms in fungal pathogens from the perspective of transcriptional gene regulation. FEMS Yeast Research, 9(7): 1029-1050 [本文引用:
[82]
82 Sanglard D, Ischer F, Koymans L, Bille J, 1998. Amino acid substitutions in the cytochrome P-450 lanosterol 14α-demethylase (CYP51A1) from azole-resistant Cand ida albicans clinical isolates contribute to resistance to azole antifungal agents. Antimicrobial Agents and Chemotherapy, 42(2): 241-253 [本文引用:
[83]
83 Sanglard D, Ischer F, Monod M, Bille J, 1997. Cloning of Cand ida albicans genes conferring resistance to azole antifungal agents: characterization of CDR2, a new multidrug ABC transporter gene. Microbiology, 143(2): 405-416 [本文引用:
[84]
84 Sanglard D, Kuchler K, Ischer F, Pagani JL, Monod M, Bille J, 1995. Mechanisms of resistance to azole antifungal agents in Cand ida albicans isolates from AIDS patients involve specific multidrug transporters. Antimicrobial Agents and Chemotherapy, 39(11): 2378-2386 [本文引用:
[85]
85 Schubert S, Barker KS, Znaidi S, Schneider S, Dierolf F, Dunkel N, A?d M, Boucher G, Rogers PD, Raymond M, Morschh?user J, 2011. Regulation of efflux pump expression and drug resistance by the transcription factors Mrr1, Upc2, and Cap1 in Cand ida albicans. Antimicrobial Agents and Chemotherapy, 55(5): 2212-2223 [本文引用:
[86]
86 Sellam A, Tebbji F, Nantel A, 2009. Role of Ndt80p in sterol metabolism regulation and azole resistance in Cand ida albicans. Eukaryotic Cell, 8(8): 1174-1183 [本文引用:
[87]
87 Seyedmousavi S, Brüggemann RJM, Melchers WJG, Rijs AJMM, Verweij PE, Mouton JW, 2013. Efficacy and pharmacodynamics of voriconazole combined with anidulafungin in azole-resistant invasive aspergillosis. Journal of Antimicrobial Chemotherapy, 68(2): 385-393 [本文引用:
[88]
88 Shapiro RS, Robbins N, Cowen LE, 2011. Regulatory circuitry governing fungal development, drug resistance, and disease. Microbiology and Molecular Biology Reviews, 75(2): 213-267 [本文引用:
[89]
89 Shen H, An MM, Wang DJ, Xu Z, Zhang JD, Gao PH, Cao YY, Cao YB, Jiang YY, 2007. Fcr1p inhibits development of fluconazole resistance in Cand ida albicans by abolishing CDR1 induction. Biological and Pharmaceutical Bulletin, 30(1): 68-73 [本文引用:
[90]
90 Simons K, Toomre D, 2000. Lipid rafts and signal transduction. Nature Reviews Molecular Cell Biology, 1(1): 31-39 [本文引用:
[91]
91 Smith WL, Edlind TD, 2002. Histone deacetylase inhibitors enhance Cand ida albicans sensitivity to azoles and related antifungals: correlation with reduction in CDR and ERG upregulation. Antimicrobial Agents and Chemotherapy, 46(11): 3532-3539 [本文引用:
[92]
92 Snelders E, van der Lee H, Kuijpers J, Rijs A, Varga J, Samson R, Mellado E, Donders A, Melchers W, Verweij P, 2008. Emergence of azole resistance in Aspergillus fumigatus and spread of a single resistance mechanism. PLoS Medicine, 5: e219 [本文引用:
[93]
93 Stie J, Fox D, 2008. Calcineurin regulation in fungi and beyond. Eukaryotic Cell, 7(2): 177-186 [本文引用:
[94]
94 Sun LM, Sun SJ, Cheng AX, Wu XZ, Zhang Y, Lou HX, 2009. In vitro activities of retigeric acid B alone and in combination with azole antifungal agents against Cand ida albicans. Antimicrobial Agents and Chemotherapy, 53(4): 1586-1591 [本文引用:
[95]
95 Sun N, Fonzi W, Chen H, She XD, Zhang LL, Zhang LX, Calderone R, 2013. Azole susceptibility and transcriptome profiling in Cand ida albicans mitochondrial electron transport chain complex I mutants. Antimicrobial Agents and Chemotherapy, 57(1): 532-542 [本文引用:
[96]
96 Sun XY, Wang KJ, Yu XX, Liu J, Zhang HX, Zhou FC, Xie BG, Li SJ, 2014. Transcription factor CCG-8 as a new regulator in the adaptation to antifungal azole stress. Antimicrobial Agents and Chemotherapy, 58(3): 1434-1442 [本文引用:
[97]
97 Sun XY, Wang WZ, Wang KJ, Yu XX, Liu J, Zhou FC, Xie BG, Li SJ, 2013. Sterol C-22 desaturase ERG5 mediates the sensitivity to antifungal azoles in Neurospora crassa and Fusarium verticillioides. Frontiers in Microbiology, 4: 127 [本文引用:
[98]
98 Talibi D, Raymond M, 1999. Isolation of a putative Cand ida albicans transcriptional regulator involved in pleiotropic drug resistance by functional complementation of a pdr1 pdr3 mutation in Saccharomyces cerevisiae. Journal of Bacteriology, 181(1): 231-240 [本文引用:
[99]
99 Tanabe K, Lamping E, Adachi K, Takano Y, Kawabata K, Shizuri Y, Niimi M, Uehara Y, 2007. Inhibition of fungal ABC transporters by unnarmicin A and unnarmicin C, novel cyclic peptides from marine bacterium. Biochemical and Biophysical Research Communications, 364(4): 990-995 [本文引用:
[100]
100 Tanigawa M, Kihara A, Terashima M, Takahara T, Maeda T, 2012. Sphingolipids regulate the yeast high osmolarity-responsive HOG pathway. Molecular and Cellular Biology, 32(14): 2861-2870 [本文引用:
[101]
101 Thevissen K, Ayscough KR, Aerts AM, Du W, De Brucker K, Meert EMK, Ausma J, Borgers M, Cammue BPA, Fran?ois IEJA, 2007. Miconazole induces changes in actin cytoskeleton prior to reactive oxygen species induction in yeast. Journal of Biological Chemistry, 282(30): 21592-21597 [本文引用:
[102]
102 Uppuluri P, Nett J, Heitman J, Andes D, 2008. Synergistic effect of calcineurin inhibitors and fluconazole against Cand ida albicans biofilms. Antimicrobial Agents and Chemotherapy, 52(3): 1127-1132 [本文引用:
[103]
103 Vasicek EM, Berkow EL, Flowers SA, Barker KS, Rogers PD, 2014. UPC2 is universally essential for azole antifungal resistance in Cand ida albicans. Eukaryotic Cell, 13(7): 933-946 [本文引用:
[104]
104 Wagener J, Echtenacher B, Rohde M, Kotz A, Krappmann S, Heesemann J, Ebel F, 2008. The putative α-1, 2-mannosyltransferase AfMnt1 of the opportunistic fungal pathogen Aspergillus fumigatus is required for cell wall stability and full virulence. Eukaryotic Cell, 7(10): 1661-1673 [本文引用:
[105]
105 Watson PF, Rose ME, Ellis SW, England H, Kelly SL, 1989. Defective sterol C5-6 desaturation and azole resistance: a new hypothesis for the mode of action of azole antifungals. Biochemical and Biophysical Research Communications, 164(3): 1170-1175 [本文引用:
[106]
106 White TC, 1997. Increased mRNA levels of ERG16, CDR, and MDR1 correlate with increases in azole resistance in Cand ida albicans isolates from a patient infected with human immunodeficiency virus. Antimicrobial Agents and Chemotherapy, 41(7): 1482-1487 [本文引用:
[107]
107 White TC, Marr KA, Bowden RA, 1998. Clinical, cellular, and molecular factors that contribute to antifungal drug resistance. Clinical Microbiology Reviews, 11(2): 382-402 [本文引用:
[108]
108 Xu DM, Jiang B, Ketela T, Lemieux S, Veillette K, Martel N, Davison J, Sillaots S, Trosok S, Bachewich C, Bussey H, Youngman P, Roemer T, 2007. Genome-wide fitness test and mechanism-of-action studies of inhibitory compounds in Cand ida albicans. PLoS Pathogens, 3(6): e92 [本文引用:
[109]
109 Yang XS, Talibi D, Weber S, Poisson G, Raymond M, 2001. Functional isolation of the Cand ida albicans FCR3 gene encoding a bZIP transcription factor homologous to Saccharomyces cerevisiae Yap3p. Yeast, 18(13): 1217-1225 [本文引用:
[110]
110 Yoshimoto H, Saltsman K, Gasch AP, Li HX, Ogawa N, Botstein D, Brown PO, Cyert MS, 2002. Genome-wide analysis of gene expression regulated by the calcineurin/Crz1p signaling pathway in Saccharomyces cerevisiae. Journal of Biological Chemistry, 277(34): 31079-31088 [本文引用:
[111]
111 Zhang Y, Zhang ZY, Zhang XY, Zhang HX, Sun XY, Hu CC, Li SJ, 2012. CDR4 is the major contributor to azole resistance among four pdr5p-like abc transporters in Neurospora crassa. Fungal Biology, 116(7): 848-854 [本文引用:
[112]
112 Zhang YQ, Gamarra S, Garcia-Effron G, Park S, Perlin DS, Rao R, 2010. Requirement for ergosterol in V-ATPase function underlies antifungal activity of azole drugs. PLoS Pathogens, 6(6): e1000939 [本文引用:
[113]
113 Zhao RM, Davey M, Hsu YC, Kaplanek P, Tong A, Parsons AB, Krogan N, Cagney G, Mai D, Greenblatt J, Boone C, Emili A, Houry WA, 2005. Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the Hsp90 chaperone. Cell, 120(5): 715-727 [本文引用:
[114]
114 Znaidi S, Weber S, Zin Al-Abdin O, Bomme P, Saidane S, Drouin S, Lemieux S, De Deken X, Robert F, Raymond M, 2008. Genomewide location analysis of Cand ida albicans Upc2p, a regulator of sterol metabolism and azole drug resistance. Eukaryotic Cell, 7(5): 836-847 [本文引用: