全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
菌物学报  2015 

粗糙脉孢菌snRNA基因的克隆及其表达调控研究

DOI: 10.13346/j.mycosystema.130194, PP. 98-107

Keywords: 粗糙脉孢菌,小核RNA,可变剪接,近端序列元件,stk-16基因

Full-Text   Cite this paper   Add to My Lib

Abstract:

Pre-mRNA(precursormRNA)的剪接是真核基因表达中的重要一环,由剪接体复合物(spliceosome)催化完成。小核RNA(smallnuclearRNAs,snRNAs)是剪接体的重要结构和功能组分。本工作首次鉴定了粗糙脉孢菌的U1、U2、U4、U5和U6等snRNA基因,这些基因除U5为单一拷贝外,其余为多拷贝基因且表达量存在差异。对各基因的近端序列元件(proximalsequenceelements,PSEs)的分析显示在大部分基因都存在一段回文的保守序列GTGCAC,荧光素酶报告基因实验证实该序列具有调控部分snRNA基因转录的功能。我们还通过温度梯度实验检测了stk-16第三内含子的剪接情况变化,结果提示可变剪接对调节生物可能对不同温度环境的适应具有重要作用。

References

[1]  Aaronson Y, Meshorer E, 2013. Stem cells: regulation by alternative splicing. Nature, 498(7453): 176-177 [本文引用:1]
[2]  Aoto J, Martinelli DC, Malenka RC, Tabuchi K, Südhof TC, 2013. Presynaptic neurexin-3 alternative splicing trans-synaptically controls postsynaptic AMPA receptor trafficking. Cell, 154(1): 75-88 [本文引用:1]
[3]  Aronson BD, Johnson KA, Loros JJ, Dunlap JC, 1994. Negative feedback defining a circadian clock: autoregulation of the clock gene frequency. Science, 263(5153): 1578-1584 [本文引用:1]
[4]  Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS, 2009. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Research, 37: W202-W208 [本文引用:1]
[5]  Black DL, 2003. Mechanisms of alternative pre-messenger RNA splicing. Annual Review of Biochemistry, 72: 291-336 [本文引用:1]
[6]  Brody E, Abelson J, 1985. The ‘spliceosome’: yeast pre-messenger RNA associates with a 40S complex in a splicing-dependent reaction. Science, 228(4702): 963-967 [本文引用:1]
[7]  Burge SW, Daub J, Eberhardt R, Tate J, Barquist L, Nawrocki EP, Eddy SR, Gardner PP, Bateman A, 2012. Rfam 11. 0: 10 years of RNA families. Nucleic Acids Research, 41(Database issue): D226-D232 [本文引用:1]
[8]  Cand eias MM, Powell DJ, Roubalova E, Apcher S, Bourougaa K, Vojtesek B, Bruzzoni-Giovanelli H, F?hraeus R, 2006. Expression of p53 and p53/47 are controlled by alternative mechanisms of messenger RNA translation initiation. Oncogene, 25(52): 6936-6947 [本文引用:1]
[9]  Chen Y, Zhang L, Jones KA, 2011. SKIP counteracts p53-mediated apoptosis via selective regulation of p21Cip1 mRNA splicing. Genes & Development, 25(7): 701-716 [本文引用:1]
[10]  Cheng P, Yang Y, Liu Y, 2001. Interlocked feedback loops contribute to the robustness of the Neurospora circadian clock. Proceedings of the National Acadamy of Sciences of the United States of America, 98(13): 7408-7413 [本文引用:1]
[11]  Colot HV, Loros JJ, Dunlap JC, 2005. Temperature-modulated alternative splicing and promoter use in the circadian clock gene frequency. Molecular Biology of the Cell, 16(12): 5563-5571 [本文引用:1]
[12]  Crooks GE, Hon G, Chand onia JM, Brenner SE, 2004. WebLogo: a sequence logo generator. Genome Research, 14(16): 1188-1190 [本文引用:1]
[13]  Diernfellner AC, Schafmeier T, Merrow MW, Brunner M, 2005. Molecular mechanism of temperature sensing by the circadian clock of Neurospora crassa. Genes & Development, 19(17): 1968-1973 [本文引用:1]
[14]  Faustino NA, Cooper TA, 2003. Pre-mRNA splicing and human disease. Genes & Development, 17(4): 419-437 [本文引用:1]
[15]  Galagan JE, Calvo SE, Borkovich KA, et al. , 2003. The genome sequence of the filamentous fungus Neurospora crassa. Nature, 422(6934): 859-868 [本文引用:2]
[16]  Garceau NY, Liu Y, Loros JJ, Dunlap JC, 1997. Alternative initiation of translation and time-specific phosphorylation yield multiple forms of the essential clock protein FREQUENCY. Cell, 89(3): 469-476 [本文引用:1]
[17]  Hernand ez N, 2001. Small nuclear RNA genes: a model system to study fundamental mechanisms of transcription. The Journal of Biochemistry, 276(29): 26733-26736 [本文引用:2]
[18]  Jawdekar GW, Henry RW, 2008. Transcriptional regulation of human small nuclear RNA genes. Biochimica et Biophysica Acta, 1779(5): 295-305 [本文引用:2]
[19]  Jia Y, Mu JC, Ackerman SL, 2012. Mutation of a U2 snRNA gene causes global disruption of alternative splicing and neurodegeneration. Cell, 148(1-2): 296-308 [本文引用:1]
[20]  Kawano CY, Said S, 2002. Morphological alterations induced by cold-shock in Neurospora crassa. Journal of Basic Microbiology, 42(6): 381-387 [本文引用:2]
[21]  Kordasiewicz H, Sedaghat Y, Donohue JP, Shiue L, Bennett CF, Yeo GW, Cleveland DW, 2011. Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nature Neuroscience, 14(4): 459-468 [本文引用:1]
[22]  Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG, 2007. Clustal W and Clustal X version 2. 0. Bioinformatics, 23(21): 2947-2948 [本文引用:1]
[23]  Liu Y, Garceau NY, Loros JJ, Dunlap JC, 1997. Thermally regulated translational control of FRQ mediates aspects of temperature responses in the neurospora circadian clock. Cell, 89(3): 477-486 [本文引用:1]
[24]  Maniatis T, Reed R, 1987. The role of small nuclear ribonucleoprotein particles in pre-mRNA splicing. Nature, 325(6106): 673-678 [本文引用:1]
[25]  Moore MJ, Wang Q, Kennedy CJ, Silver PA, 2010. An alternative splicing network links cell-cycle control to apoptosis. Cell, 142(4): 625-636 [本文引用:1]
[26]  Mount SM, Gotea V, Lin CF, Hernand ez K, Makalowski W, 2007. Spliceosomal small nuclear RNA genes in 11 insect genomes. RNA, 13(1): 5-14 [本文引用:1]
[27]  Nilsen TW, 2003. The spliceosome: the most complex macromolecular machine in the cell?Bioessays, 25(12): 1147-1149 [本文引用:1]
[28]  Park G, Servin JA, Turner GE, Altamirano L, Colot HV, Collopy P, Litvinkova L, Li L, Jones CA, Diala FG, Dunlap JC, Borkovich KA, 2011. Global analysis of serine-threonine protein kinase genes in Neurospora crassa. Eukaryotic Cell, 10(11): 1553-1564 [本文引用:2]
[29]  Plesofsky-Vig N, Brambl R, 1985. Heat shock response of Neurospora crassa: protein synthesis and induced thermotolerance. Journal of Bacteriology, 162(3): 1083-1091 [本文引用:1]
[30]  Prinos P, Garneau D, Lucier JF, Gendron D, Couture S, Boivin M, Brosseau JP, Lapointe E, Thibault P, Durand M, Tremblay K, Gervais-Bird J, Nwilati H, Klinck R, Chabot B, Perreault JP, Wellinger RJ, Elela SA, 2011. Alternative splicing of SYK regulates mitosis and cell survival. Nature Structural & Molecular Biology, 18(6): 673-679 [本文引用:1]
[31]  Riedel N, Wise JA, Swerdlow H, Mak A, Guthrie C, 1986. Small nuclear RNAs from Saccharomyces cerevisiae: unexpected diversity in abundance, size, and molecular complexity. Proceedings of the National Acadamy of Sciences of the United States of America, 83(21): 8097-8101 [本文引用:1]
[32]  Rino J, Carmo-Fonseca M, 2009. The spliceosome: a self-organized macromolecular machine in the nucleus?Trends in Cell Biology, 19(8): 375-384 [本文引用:1]
[33]  Saluz H, Dudler R, Schmidt T, Kubli E, 1988. The localization and estimated copy number of Drosophia melanogaster U1, U4, U5 and U6 snRNA genes. Nucleic Acids Research, 16(8): 3582 [本文引用:1]
[34]  Tani T, Ohshima Y, 1989. The gene for the U6 small nuclear RNA in fission yeast has an intron. Nature, 337(6202): 89-90 [本文引用:1]
[35]  Valadkhan S, 2005. snRNAs as the catalysts of pre-mRNA splicing. Current Opinion in Chemical Biology, 9(6): 603-608 [本文引用:2]
[36]  Valadkhan S, 2010. Role of the snRNAs in spliceosomal active site. RNA Biology, 7(3): 345-353 [本文引用:1]
[37]  Wahl MC, Will CL, Lührmann R, 2009. The spliceosome: design principles of a dynamic RNP machine. Cell, 136(4): 701-718 [本文引用:1]
[38]  Wentz-Hunter K, Potashkin J, 1995. The evolutionary conservation of the splicing apparatus between fission yeast and man. Nucleic Acids Symposium Series, 33: 226-228 [本文引用:1]
[39]  Will CL, Lührmann R, 2011. Spliceosome structure and function. Cold Spring Harbor Perspectives in Biology, 3: a003707 [本文引用:1]
[40]  Zahler AM, Tuttle JD, Chisholm AD, 2004. Genetic suppression of intronic +1G mutations by compensatory U1 snRNA changes in Caenorhabditis elegans. Genetics, 167: 1689-1696 [本文引用:1]

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133