全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
菌物学报  2015 

食(药)用真菌比较基因组分析揭示其生态特性

DOI: 10.13346/j.mycosystema.150037, PP. 742-760

Keywords: 食用菌,药用菌,木质纤维素,木质素

Full-Text   Cite this paper   Add to My Lib

Abstract:

食(药)用真菌可以产生多种酶系家族来降解环境中的木质纤维素,从而获得营养或与植物共生或寄生。通过注释和比较不同营养模式的食(药)用真菌中降解木质纤维素的酶类,有利于我们更好地认识食(药)用真菌的生活模式,并进一步改善培养条件。本文系统地研究了46个食(药)用真菌和3个降解木质纤维素模式真菌的基因组,根据预测蛋白质组解析了糖苷水解酶(glycosidehydrolases,GHs)、糖基转移酶(glycosyltransferases,GTs)、多糖裂解酶(polysaccharidelyases,PLs)、碳水化合物酯酶(carbohydrateesterases,CEs)、碳水化合物结合模块(carbohydrate-bindingmodules,CBMs)以及附属活力酶(auxiliaryactivities,AAs)和细胞色素P450(cytochromesP450)的种类分布。比较基因组学结果显示,食(药)用真菌中降解木质纤维素相关酶系家族的数量和种类差别很大,同时酶系家族的多样性与食(药)用真菌的生态类型也有一定的相关性。一般情况下,腐生营养真菌比共生营养真菌中降解木质纤维素酶类更多,而腐生营养中的白腐真菌和草腐真菌的酶系比褐腐真菌多。

References

[1]  Allen MF, 1991. The ecology of mycorrhizae. Cambridge University Press, Cambridge. 1-200 [本文引用:1]
[2]  Bao D, Gong M, Zheng H, Chen M, Zhang L, Wang H, Jiang J, Wu L, Zhu Y, Zhu G, 2013. Sequencing and comparative analysis of the straw mushroom (Volvariella volvacea) genome. PLoS One, 8: e58294 [本文引用:2]
[3]  Battaglia E, Benoit I, van den Brink J, Wiebenga A, Coutinho PM, Henrissat B, Vries RP, 2011. Carbohydrate-active enzymes from the zygomycete fungus Rhizopus oryzae: a highly specialized approach to carbohydrate degradation depicted at genome level. BMC Genomics, 12: 12-38 [本文引用:1]
[4]  Boa ER, 2004. Wild edible fungi: a global overview of their use and importance to people. Food and Agriculture Organization of the United Nations, Rome. 1-147 [本文引用:1]
[5]  B?deker IT, Nygren CM, Taylor AF, Olson ?ke, Lindahl BD, 2009. Class II peroxidase-encoding genes are present in a phylogenetically wide range of ectomycorrhizal fungi. The ISME Journal, 3: 1387-1395 [本文引用:1]
[6]  Brown NA, Antoniw J, Hammond-Kosack KE, 2012. The predicted secretome of the plant pathogenic fungus Fusarium graminearum: a refined comparative analysis. PLoS One, 7: e33731 [本文引用:1]
[7]  Burton KS, Smith JF, Wood DA, Thurston CF, 1997. Extracellular proteinases from the mycelium of the cultivated mushroom Agaricus bisporus. Mycological Research, 101: 1341-1347 [本文引用:1]
[8]  Buswell J, Cai Y, Chang S, Peberdy JF, Fu SY, Yu HS, 1996. Lignocellulolytic enzyme profiles of edible mushroom fungi. World Journal of Microbiology and Biotechnology, 12: 537-542 [本文引用:1]
[9]  Cai Y, Buswell J, Chang S, 1994. Production of cellulases and hemicellulases by the straw mushroom, Volvariella volvacea. Mycological Research, 98: 1019-1024 [本文引用:1]
[10]  司静, 李伟, 崔宝凯, 戴玉成, 2011. 真菌漆酶性质、分子生物学及其应用研究进展. 生物技术通报, 223: 48-55 [本文引用:1]
[11]  田朝光, 马延和, 2010. 真菌降解木质纤维素的功能基因组学研究进展. 生物工程学报, 26: 1333-1339 [本文引用:1]
[12]  Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B, 2009. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Research, 37: 233-238 [本文引用:13]
[13]  Castresana J, 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution, 17: 540-552 [本文引用:1]
[14]  Chen BZ, Gui F, Xie BG, Deng YJ, Sun XY, Lin MY, Tao YX, Li SJ, 2013. Composition and expression of genes encoding carbohydrate-active enzymes in the straw-degrading mushroom Volvariella volvacea. PLoS One, 8: e58780 [本文引用:2]
[15]  Dai YC, Yang ZL, 2008. A revised checklist of medicinal fungi in China. Mycosystema, 27: 801-824 (in Chinese) [本文引用:1]
[16]  Dai YC, Zhou LW, Yang ZL, Wen HA, Bau T, Li TH, 2010. A revised checklist of edible fungi in China. Mycosystema, 29: 1-21 (in Chinese) [本文引用:1]
[17]  Darriba D, Taboada GL, Doallo R, Posada D, 2011. ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics, 27: 1164-1165 [本文引用:1]
[18]  Douaiher MN, Nowak E, Durand R, Halama P, Reignault P, 2007. Correlative analysis of Mycosphaerella graminicola pathogenicity and cell wall‐degrading enzymes produced in vitro: the importance of xylanase and polygalacturonase. Plant Pathology, 56: 79-86 [本文引用:1]
[19]  Eddy SR, 2009. A new generation of homology search tools based on probabilistic inference. Genome Information, 23: 205-211 [本文引用:1]
[20]  Fernand ez-Fueyo E, Ruiz-Duenas FJ, Ferreira P, Floudas D, Hibbett DS, Canessa P, Larrondo LF, James TY, Seelenfreund D, Lobos S, Polanco R, Tello M, Honda Y, Watanabe T, Watanabe T, San RJ, Kubicek CP, Schmoll M, Gaskell J, Hammel KE, et al. , 2012. Comparative genomics of Ceriporiopsis subvermispora and Phanerochaete chrysosporium provide insight into selective ligninolysis. Proceedings of the National Academy of Sciences of the United States of America, 109: 5458-5463 [本文引用:1]
[21]  Floudas D, Binder M, Riley R, Barry K, Blanchette RA, Henrissat B, Martinez AT, Otillar R, Spatafora JW, Yadav JS, Aerts A, Benoit I, Boyd A, Carlson A, Copeland A, Coutinho PM, de Vries RP, Ferreira P, Findley K, Foster B, et al. , 2012. The paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science, 336: 1715-1719 [本文引用:5]
[22]  Frank B, 1894. Die bedeutung der Mykorhiza-pilze für die gemeine Kiefer. Forstwissenschaftliches Centralblatt, 16: 1852-1890 [本文引用:1]
[23]  Isikhuemhen O, Mikiashvilli N, 2009. Lignocellulolytic enzyme activity, substrate utilization, and mushroom yield by Pleurotus ostreatus cultivated on substrate containing anaerobic digester solids. Journal of Industrial Microbiology and Biotechnology, 36: 1353-1362 [本文引用:1]
[24]  Katoh K, Toh H, 2008. Recent developments in the MAFFT multiple sequence alignment program. Briefings in Bioinformatics, 9: 286-298 [本文引用:2]
[25]  King BC, Waxman KD, Nenni NV, Walker LP, Bergstrom GC, Gibson DM, 2011. Arsenal of plant cell wall degrading enzymes reflects host preference among plant pathogenic fungi. Biotechnology for Biofuels, 4: 4-17 [本文引用:1]
[26]  Leake JR, Read DJ, 1997. Mycorrhizal fungi in terrestrial habitats. In: Wicklow DT, Sioderstrom B (eds. ) Environmental and microbial relationships. Springer-Verlag, Berlin. 281-301 [本文引用:1]
[27]  Levasseur A, Drula E, Lombard V, Coutinho PM, Henrissat B, 2013. Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnology for Biofuels, 6: 41-54 [本文引用:3]
[28]  Levasseur A, Piumi F, Coutinho PM, Rancurel C, Asther M, Delattre M, Henrissat B, Pontarotti P, Asther M, Record E, 2008. FOLy: an integrated database for the classification and functional annotation of fungal oxidoreductases potentially involved in the degradation of lignin and related aromatic compounds. Fungal Genetics and Biology, 45: 638-645 [本文引用:1]
[29]  Martin F, Aerts A, Ahren D, Brun A, Danchin EGJ, Duchaussoy F, Gibon J, Kohler A, Lindquist E, Pereda V, Salamov A, Shapiro HJ, Wuyts J, Blaudez D, Buee M, Brokstein P, Canback B, Cohen D, Courty PE, Coutinho PM, et al. , 2008. The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature, 452: 88-92 [本文引用:2]
[30]  Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, Chapman J, Chertkov O, Coutinho PM, Cullen D, Danchin EGJ, Grigoriev IV, Harris P, Jackson M, Kubicek CP, Han CS, Ho I, Larrondo LF, de Leon AL, Magnuson JK, et al. , 2008. Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nature Biotechnology, 26: 553-560 [本文引用:1]
[31]  Martinez D, Challacombe J, Morgenstern I, Hibbett D, Schmoll M, Kubicek CP, Ferreira P, Ruiz-Duenas FJ, Martinez AT, Kersten P, 2009. Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion. Proceedings of the National Academy of Sciences of the United States of America, 106: 1954-1959 [本文引用:1]
[32]  Martinez D, Larrondo LF, Putnam N, Gelpke MDS, Huang K, Chapman J, Helfenbein KG, Ramaiya P, Detter JC, Larimer F, Coutinho PM, Henrissat B, Berka R, Cullen D, Rokhsar D, 2004. Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nature Biotechnology, 22: 695-700 [本文引用:1]
[33]  Matheny PB, Wang Z, Binder M, Curtis JM, Lim YW, Nilsson RH, Hughes KW, Hofstetter V, Ammirati JF, Schoch CL, 2007. Contributions of rpb2 and tef1 to the phylogeny of mushrooms and allies (Basidiomycota, Fungi). Molecular Phylogenetics and Evolution, 43: 430-451 [本文引用:1]
[34]  Morin E, Kohler A, Baker AR, Foulongne-Oriol M, Lombard V, Nagy LG, Ohm RA, Patyshakuliyeva A, Brun A, Aerts AL, Bailey AM, Billette C, Coutinho PM, Deakin G, Doddapaneni H, Floudas D, Grimwood J, Hilden K, Kues U, LaButti KM, et al. , 2012. Genome sequence of the button mushroom Agaricus bisporus reveals mechanisms governing adaptation to a humic-rich ecological niche. Proceedings of the National Academy of Sciences of the United States of America, 109: 17501-17506 [本文引用:4]
[35]  Ohm RA, de Jong JF, Lugones LG, Aerts A, Kothe E, Stajich JE, de Vries RP, Record E, Levasseur A, Baker SE, Bartholomew KA, Coutinho PM, Erdmann S, Fowler TJ, Gathman AC, Lombard V, Henrissat B, Knabe N, Kues U, Lilly WW, et al. , 2010. Genome sequence of the model mushroom Schizophyllum commune. Nature Biotechnology, 28: 957-965 [本文引用:1]
[36]  Omura T, 1999. Forty years of cytochrome P450. Biochemical and Biophysical Research Communications, 266: 690-698 [本文引用:1]
[37]  Ospina-Giraldo MD, Griffith JG, Laird EW, Mingora C, 2010. The CAZyome of Phytophthora spp. : a comprehensive analysis of the gene complement coding for carbohydrate-active enzymes in species of the genus Phytophthora. BMC Genomics, 11: 525 [本文引用:1]
[38]  Park YJ, Baek JH, Lee S, Kim C, Rhee H, Kim H, Seo JS, Park HR, Yoon DE, Nam JY, 2014. Whole genome and global gene expression analyses of the model mushroom Flammulina velutipes reveal a high capacity for lignocellulose degradation. PLoS One, 9: e93560 [本文引用:1]
[39]  Philippoussis A, Zervakis G, Diamantopoulou P, 2001. Bioconversion of agricultural lignocellulosic wastes through the cultivation of the edible mushrooms Agrocybe aegerita, Volvariella volvacea and Pleurotus spp. World Journal of Microbiology and Biotechnology, 17: 191-200 [本文引用:1]
[40]  Piccolo A, 2002. The supramolecular structure of humic substances: a novel understand ing of humus chemistry and implications in soil science. Advances in Agronomy, 75: 57-134 [本文引用:1]
[41]  Read DJ, 1991. Mycorrhizas in ecosystems. Experientia, 47: 376-391 [本文引用:1]
[42]  Rubini A, Belfiori B, Riccioni C, Paolocci F, 2012. Genomics of Tuber melanosporum: new knowledge concerning reproductive biology, symbiosis, and aroma production. In: Zambonelli A, Bonito GM (eds. ) Edible ectomycorrhizal mushrooms. Springer Berlin Heidelberg, Berlin. 57-72 [本文引用:1]
[43]  Sánchez C, 2009. Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnology Advances, 27: 185-194 [本文引用:3]
[44]  Si J, Li W, Cui BK, Dai YC, 2011. Advances of research on characteristic, molecular biology and applications of laccase from fungi. Biotechnology Bulletin, 223: 48-55 (in Chinese) [本文引用:1]
[45]  Stajich JE, Wilke SK, Ahren D, Au CH, Birren BW, Borodovsky M, Burns C, Canback B, Casselton LA, Cheng CK, Deng JX, Dietrich FS, Fargo DC, Farman ML, Gathman AC, Goldberg J, Guigo R, Hoegger PJ, Hooker JB, Huggins A, et al. , 2010. Insights into evolution of multicellular fungi from the assembled chromosomes of the mushroom Coprinopsis cinerea (Coprinus cinereus). Proceedings of the National Academy of Sciences of the United States of America, 107: 11889-11894 [本文引用:2]
[46]  Stamatakis A, 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousand s of taxa and mixed models. Bioinformatics, 22: 2688-2690 [本文引用:1]
[47]  Tanaka H, Yoshida G, Baba Y, Matsumura K, Wasada H, Murata J, Agawa M, Itakura S, Enoki A, 2007. Characterization of a hydroxyl-radical-producing glycoprotein and its presumptive genes from the white-rot basidiomycete Phanerochaete chrysosporium. Journal of Biotechnology, 128: 500-511 [本文引用:1]
[48]  Tedersoo L, May TW, Smith ME, 2010. Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza, 20: 217-263 [本文引用:1]
[49]  Tian CG, Ma YH, 2010. Progress in lignocellulose deconstruction by fungi. Chinese Journal of Biotechnology, 26: 1333-1339 (in Chinese) [本文引用:1]
[50]  Tian CG, Beeson WT, Iavarone AT, Sun JP, Marletta MA, Cate JHD, Glass NL, 2009. Systems analysis of plant cell wall degradation by the model filamentous fungus Neurospora crassa. Proceedings of the National Academy of Sciences of the United States of America, 106: 22157-22162 [本文引用:1]
[51]  van den Brink J, de Vries RP, 2011. Fungal enzyme sets for plant polysaccharide degradation. Applied Microbiology and Biotechnology, 91: 1477-1492 [本文引用:1]
[52]  Waterhouse RM, Tegenfeldt F, Li J, Zdobnov EM, Kriventseva EV, 2013. OrthoDB: a hierarchical catalog of animal, fungal and bacterial orthologs. Nucleic Acids Research, 41: 358-365 [本文引用:1]
[53]  Wymelenberg AV, Gaskell J, Mozuch M, Sabat G, Ralph J, Skyba O, Mansfield SD, Blanchette RA, Martinez D, Grigoriev I, Kersten PJ, Cullen D, 2010. Comparative transcriptome and secretome analysis of wood decay fungi Postia placenta and Phanerochaete chrysosporium. Applied and Environmental Microbiology, 76: 3599-3610 [本文引用:3]
[54]  Yin Y, Mao X, Yang J, Chen X, Mao F, Xu Y, 2012. dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Research, 40: W445-W451 [本文引用:1]
[55]  Zhao Z, Liu H, Wang C, Xu JR, 2013. Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi. BMC Genomics, 14: 274 [本文引用:4]
[56]  戴玉成, 杨祝良, 2008. 中国药用真菌名录及部分名称的修订. 菌物学报, 27: 801-824 [本文引用:1]
[57]  戴玉成, 周丽伟, 杨祝良, 文华安, 图力古尔, 李泰辉, 2010. 中国食用菌名录. 菌物学报, 29: 1-29 [本文引用:1]

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133