Li Y, Xu F, Liu C, Xu Y, Feng X, Liu B F. A novel microfluidic mixer based on dual-hydrodynamic focusing for interrogating the kinetics of DNA-protein interaction [J]. Analyst, 2013, 138: 4475-4482.
[2]
Hardt S, Drese K S, Hessel V, Sch?nfeld F. Passive micromixers for applications in the microreactor and μTAS fields [J]. Microfluid. Nanofluid., 2005, 1: 108-118.
[3]
Wu C Y, Tsai R T. Fluid mixing via multidirectional vortices in converging-diverging meandering microchannels with semi-elliptical side walls [J]. Chem. Eng. J., 2013, 217: 320-328.
[4]
Sabotin I, Tristo G, Junkar M, Valentin?i? J. Two-step design protocol for patterned groove micromixers [J]. Chem. Eng. Res. Des., 2013, 91: 778-788.
[5]
Xia G D, Li J, Tian X P, Zhou M Z. Analysis of flow and mixing characteristics of planar asymmetric split-and-recombine (P-SAR) micromixers with fan-shaped cavities [J]. Ind. Eng. Chem. Res., 2012, 51: 7816-7827.
[6]
Li J, Xia G D, Li Y F. Numerical and experimental analyses of planar asymmetric split-and-recombine micromixer with dislocation sub-channels [J]. J. Chem. Technol. Biotechnol., 2013, 88: 1757-1765.
[7]
Ottino J M. The Kinematics of Mixing: Stretching, Chaos, and Transport [M]. New York: Cambridge University Press, 1989.
[8]
Shih T R, Chung C K. A high-efficiency planar micromixer with convection and diffusion mixing over a wide Reynolds number range [J]. Microfluid. Nanofluid., 2008, 5: 175-183.
[9]
Cheri M S, Latifi H, Moghaddam M S, Shahraki H. Simulation and experimental investigation of planar micromixers with short-mixing-length [J]. Chem. Eng. J., 2013, 234: 247-255.
[10]
Hossain S, Husain A, Kim K Y. Shape optimization of a micromixer with staggered-herringbone grooves patterned on opposite walls [J]. Chem. Eng. J., 2010, 162: 730-737.
[11]
Li Jian (李健), Xia Guodong (夏国栋). Fluid flow and mixing characteristics in micromixer with vortex-generated structures [J]. CIESC Journal (化工学报), 2013, 64: 2328-2335.
[12]
Wang L J, Wu W, Li X. Numerical and experimental investigation of mixing characteristics in the constructal tree-shaped microchannel [J]. Int. J. Heat Mass Transf., 2013, 67:1014-1023.
[13]
Afzal A, Kim K Y. Passive split and recombination micromixer with convergent-divergent walls [J]. Chem. Eng. J., 2012, 203: 182-192.
[14]
Guo Z Y, Li D Y, Wang B X. A novel concept for convective heat transfer enhancement [J]. Int. J. Heat Mass Transf., 1998, 41: 2221-2225.
[15]
Chen Q, Wang M, Guo Z Y. Field synergy principle for energy conservation analysis and application [J]. Adv. Mech. Eng., 2010, 9: 129313.
[16]
Tian L T, He Y L, Lei Y G, Tao W Q. Numerical study of fluid flow and heat transfer in a flat-plate channel with longitudinal vortex generators by applying field synergy principle analysis [J]. Int. Commun. Heat Mass Transf., 2009, 36: 111-120.
[17]
Ren Y, Leung W W F. Numerical and experimental investigation on flow and mixing in batch-mode centrifugal microfluidics [J]. Int. J. Heat Mass Transf., 2013, 60: 95-104.
[18]
Hossain S, Ansari M A, Kim K Y. Evaluation of the mixing performance of three passive micromixers [J]. Chem. Eng. J., 2009, 150: 492-501.
[19]
Tsai R T, Wu C Y. An efficient micromixer based on multidirectional vortices due to baffles and channel curvature [J]. Biomicrofluidics, 2011, 5: 014103.
[20]
Liu W, Liu Z C, Ming T Z, Guo Z Y. Physical quantity synergy in laminar flow field and its application in heat transfer enhancement [J]. Int. J. Heat Mass Transf., 2009, 52: 4669-4672.