全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2015 

组合表面调控液滴特性强化蒸汽冷凝传热

DOI: 10.11949/j.issn.0438-1157.20150390, PP. 3826-3833

Keywords: 凝结,传热,格子Boltzmann模拟,表面,组合传热模型,传热强化

Full-Text   Cite this paper   Add to My Lib

Abstract:

制备了具有不同疏水区宽度和面积分率的疏水-亲水间隔规则排列的组合表面。观测常压蒸汽在组合表面上冷凝时疏水区液滴的特性(液滴移除方式和最大液滴半径),利用格子Boltzmann方法模拟组合表面上凝液的运动。考察疏水区、亲水区宽度和表面过冷度对组合表面强化蒸汽冷凝传热的影响。利用滴状-膜状组合传热模型分析组合表面蒸汽冷凝传热性能的影响因素,并与实验结果比较。发现疏水区液滴自发地向亲水区定向迁移,精细设计的组合表面可以实现蒸汽滴状冷凝传热的强化,实验中强化因子可达1.20。疏水区宽度约为0.55mm时组合表面的传热性能最大。表面过冷度越大,组合表面强化传热的效果越差,模型分析与实验结果吻合良好。

References

[1]  Tanasawa I, Ochiai J. Experimental study on dropwise condensation [J]. Bulletin of Japan Society of Mechanic Engineers, 1972, 16: 1184.
[2]  Yamali C, Merte J H. A theory of dropwise condensation at large subcooling including the effect of the sweeping [J]. Heat and Mass Transfer, 2002, 38: 191-202.
[3]  Rose J W. Dropwise condensation theory and experiments: a review [J]. Proceedings Institution of Mechanical Engineers, 2002, 216: 115-128.
[4]  Le Ferve E J, Rose J W. A theory of heat transfer by dropwise condensation//Proceedings of 3rd International Heat Transfer Conference[C]. 1966: 362-375.
[5]  Daniel S, Chaudhury M K, Chen J C. Fast drop movements resulting from the phase change on a gradient surface [J]. Science, 2001, 291(5504): 633-636.
[6]  Macner A M, Daniel S, Steen P H. Condensation on surface energy gradient shifts drop size distribution toward small drops [J]. Langmuir, 2014, 30: 1788-1798.
[7]  Liao Q, Shi Y, Fan Y, Zhu X, Wang H. Numerical simulations of the equilibrium shape of liquid droplets on gradient surfaces [J]. Applied Thermal Engineering, 2009, 29: 372-379.
[8]  Zhu X, Wang H, Liao Q, Ding Y D, Gu Y B. Experiments and analysis on self-motion behaviors of liquid droplets on gradient surfaces [J]. Experimental Thermal and Fluid Science, 2009, 33(6): 947-954.
[9]  Chaudhury M K, Whitesides G M. How to make water run uphill [J]. Science, 1992, 256(5063): 1539-1541.
[10]  Ma Xuehu(马学虎), Song Tianyi(宋天一), Lan Zhong(兰忠), Zhou Xingdong(周兴东). The effect of dividing surface on heat transfer characteristics of dropwise condensation [J]. The Chinese Journal of Process Engineering(过程工程学报), 2007, 7(3): 472-475.
[11]  Ma X H, Zhou X D, Lan Z, Song T Y, Ji J. Experimental investigation of enhancement of dropwise condensation heat transfer of steam-air mixture: falling droplet effect [J]. Journal of Enhanced Heat Transfer, 2007, 14: 295-305.
[12]  Yamauchi A, Kumagai S, Takeyama T. Condensation heat transfer on various dropwise-filmwise coexisting surface [J]. Heat Transfer-Japanese Research, 1986, 15: 50-64.
[13]  Kumagai S, Tanaka S, Katsuda H, Shimada R. On the enhancement of filmwise condensation heat transfer by means of the coexistence dropwise condensation sections [J]. Experimental Heat Transfer, 1991, 4: 71-82.
[14]  Grooten M H M, van der Geld C W M. Surface property effects on dropwise condensation heat transfer from flowing air-steam mixtures to promote drainage [J]. International Journal of Thermal Sciences, 2012, 54: 220-229.
[15]  Ma X H, Zhou X D, Lan Z, Li Y M, Zhang Y. Condensation heat transfer enhancement in the presence of non-condensable gas using the interfacial effect of dropwise condensation [J]. Internatinal Journal of Heat and Mass Transfer, 2008, 51(7/8): 1728-1737.
[16]  O'Neill G A, Westwater J W. Dropwise condensation of steam on electroplated silver surfaces [J]. International Journal of Heat and Mass Transfer, 1984, 27(9): 1539-1549.
[17]  Wilcox S J, Rohsenow W M. Film condensation of potassium using copper condensing block for precise wall-temperature measurement [J]. ASME Journal of Heat Transfer, 1970, 8: 359-371.
[18]  Guo J H, Wang X Y. Simulation of the two phase flow of droplet impingement on liquid film by the lattice Boltzmann method [J]. Journal of Hydrodynamics, 2012, 24(2): 292-297.
[19]  Castrejon-Pita J R, Betton E S, Kubiak K J, Wilson M C T, Hutchings I M. The dynamics of the impact and coalescence of droplets on a solid surface [J]. Biomicrofluidics, 2011, 5: 014112.
[20]  Gong S, Cheng P. Numerical investigation of droplet motion and coalescence by an improved lattice Boltzmann model for phase transitions and multiphase flows [J]. Computer & Fluids, 2012, 53: 93-104.
[21]  Attar E, Korner C. Lattice Boltzmann method for dynamic wetting problems [J]. Journal of Colloid and Interface Science, 2009, 335: 84-93.
[22]  Moradi N, Gross M, Varnik F, Zikos G, Steinbach I. Morphologies of small droplets on patterned hydrophobic substrates [J]. Modelling Simulation Material Science Engneering, 2011, 19: 045005.
[23]  Dupuis A, Yeomans J M. Dynamics of sliding drops on superhydrophobic surfaces [J]. Europhysics Letters, 2006, 75: 105-110.
[24]  Liu X L, Cheng P. Lattice Boltzmann simulation of steady laminar film condensation on a vertical hydrophilic subcooled flatplate [J]. International Journal of Heat and Mass Transfer, 2013, 62: 507-514.
[25]  Liu X L, Cheng P. Lattice Boltzmann simulation for dropwise condensation of vapor along vertical hydrophobic flat plates [J]. International Journal of Heat and Mass Transfer, 2013, 64: 1041-1052.
[26]  Briant A J, Wagner A J, Yeomans J M. Lattice Boltzmann simulations of contact line motion(I): Liquid-gas system [J]. Physical Review E, 2004, 69: 031602.
[27]  Peng B L, Wang S F, Lan Z, Xu W, Wen R F, Ma X H. Analysis of droplet jumping phenomenon with lattice Boltzmann simulation of droplet coalescence [J]. Applied Physics Letters, 2013, 102: 151601.
[28]  Peng Benli(彭本利), Lan Zhong(兰忠), Xu Wei(徐威), Wen Rongfu(温荣福), Bai Tao(白涛), Ma Xuehu(马学虎). Droplet coalescence simulation by lattice Boltzmann method and theoretical analysis of droplet jumping phenomenon [J]. Journal of Engineering Thermophysics(工程热物理学报), 2013, 34(9): 1731-1734.
[29]  Peng B L, Ma X H, Lan Z, Xu W, Wen R F. Analysis of condensation heat transfer enhancement with dropwise-filmwise hybrid surface: droplet sizes effect [J]. International Journal of Heat and Mass Transfer, 2014, 77: 785-794.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133