全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2015 

不同物相TiO2对H2O2/O3氧化效能的影响

DOI: 10.11949/j.issn.0438-1157.20141858, PP. 3950-3956

Keywords: 臭氧,双氧水,氧化,催化剂,二氧化钛,物相,自由基

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究了不同物相TiO2对H2O2/O3氧化效能的影响,目标有机物为羟基自由基探针化合物乙酸。结果表明,在初始pH为7.0和10.0时,加入TiO2反而降低了H2O2/O3的氧化效率,其中锐钛矿TiO2比金红石TiO2的减弱作用更为明显。当初始pH为3.0时,金红石TiO2能显著提高H2O2/O3的氧化效率,但锐钛矿TiO2影响不明显。机理分析表明,H2O2浓度及其衰减速率与乙酸的去除效率有很大的相关性。在pH为7.0和10.0时,两种物相TiO2均能加快H2O2的分解,其中锐钛矿TiO2作用更为显著。此条件下HO2-能有效引发臭氧分解产生羟基自由基,故H2O2过快分解反而降低了乙酸的去除效果。在pH为3.0时,H2O2去质子化反应困难,故O3/H2O2氧化效率极低,H2O2浓度也几乎不变。加入TiO2能明显提高H2O2的分解速率,相比金红石TiO2,锐钛矿TiO2使H2O2在5min内基本分解完毕,但其对H2O2/O3氧化效率几乎没有影响。饱和臭氧水分解速度的批处理实验也有相似的结果。由此可见,合适引发剂浓度可能是保证臭氧类高级氧化技术较高效率的关键,否则只会导致氧化剂的无效过快分解。利用氯化硝基四氮唑蓝法对比分析了酸性条件下H2O2/O3、锐钛矿TiO2/H2O2/O3和金红石TiO2/H2O2/O3体系产生超氧自由基(·O2-)的量,其大小顺序为:H2O2/O3<金红石TiO2/H2O2/O3<锐钛矿TiO2/H2O2/O3,这与前面结果吻合很好。

References

[1]  Legube B, Leitner N K V. Catalytic ozonation: a promising advanced oxidation technology for water treatment [J]. Catalysis Today, 1999, 53(1): 61-72.
[2]  Kasprzyk-Hordern B, Ziólek M, Nawrocki J. Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment [J]. Applied Catalysis B: Environmental, 2003, 46(4): 639-669.
[3]  Zeng Z Q, Wang J F, Li Z H, Sun B C, Shao L, Li W J, Chen J F, Zou H K. The advanced oxidation process of phenol solution by O3/H2O2 in a rotating packed bed [J]. Ozone: Science & Engineering, 2013, 35(2): 101-108.
[4]  Nawrocki J. Catalytic ozonation in water: controversies and questions. discussion paper [J]. Applied Catalysis B: Environmental, 2013, 142-143: 465-471.
[5]  Pines D S, Reckhow D A. Effect of dissolved cobalt(Ⅱ) on the ozonation of oxalic acid [J]. Environmental Science and Technology, 2002, 36(19): 4046-4051.
[6]  Beltrán F J, Rivas F J, Montero-de-Espinosa R. Iron type catalysts for the ozonation of oxalic acid in water [J]. Water Research, 2005, 39(15): 3553-3564.
[7]  Li Wenwen(李文文), Liu Pengpeng(刘朋朋), Zhang Hua(张华), Shi Rui(石锐), Tong Shaoping(童少平), Ma Chun'an(马淳安). Degradation of acetic acid by Ti(Ⅳ)-catalyzed H2O2/O3 [J]. CIESC Journal (化工学报), 2010, 61(7): 1790-1795.
[8]  Tong S P, Zhao S Q, Lan X F, Ma C A. A kinetic model of Ti(Ⅳ)-catalyzed H2O2/O3 process in aqueous solution [J]. Journal of Environmental Sciences, 2011, 23(12): 2087-2092.
[9]  Xiao H, Liu R P, Zhao X, Qu J H. Enhanced degradation of 2,4-dinitrotoluene by ozonation in the presence of manganese(Ⅱ) and oxalic acid [J]. Journal of Molecular Catalysis A: Chemical, 2008, 286(1/2): 149-155.
[10]  Dorota B M, Jacek S, Stanislaw L. Kinetic studies of n-butylparaben degradation in H2O2/UV system [J]. Ozone: Science & Engineering, 2012, 34(5): 354-358.
[11]  Qi F, Xu B B, Chen Z L, Ma J, Sun D Z, Zhang L Q. Influence of aluminum oxides surface properties on catalyzed ozonation of 2,4,6-trichloroanisole [J]. Separation and Purification Technology, 2009, 66: 405-410.
[12]  Zhang T, Li C J, Ma J, Tian H, Qiang Z M. Surface hydroxyl groups of synthetic a-FeOOH in promoting ·OH generation from aqueous ozone: property and activity relationship [J]. Applied Catalysis B: Environmental, 2008, 82: 131-137.
[13]  Ikhlaq A, Brown D R, Kasprzyk-Hordern B. Mechanisms of catalytic ozonation: an investigation into superoxide ion radical and hydrogen peroxide formation during catalytic ozonation on alumina and zeolites in water [J]. Applied Catalysis B: Environmental, 2013, 129: 437-449.
[14]  Bauman M, Lobnik A, Hribernik A. Decolorization and modeling of synthetic wastewater using O3 and H2O2/O3 processes [J]. Ozone: Science & Engineering, 2011, 33(1): 23-30.
[15]  Kurniawan T A, Lo W H, Chan G Y S. Radicals-catalyzed oxidation reactions for degradation of recalcitrant compounds from landfill leachate [J]. Chemical Engineering Journal, 2006, 125(1): 35-57.
[16]  Inagaki M, Nonaka R, Tryba B, Morawski A W. Dependence of photocatalytic activity of anatase powders on their crystallinity [J]. Chemosphere, 2006, 64: 437-445.
[17]  Hirakawa T, Yawata K, Nosaka Y. Photocatalytic reactivity for O2-·and·OH radical formation in anatase and rutile TiO2 suspension as the effect of H2O2 addition [J]. Applied Catalysis A: General, 2007, 325: 105-111.
[18]  Daimon T, Hirakawa T, Kitazawa M, Suetake J, Nosaka Y. Formation of singlet molecular oxygen associated with the formation of superoxide radicals in aqueous suspensions of TiO2 photocatalysts [J]. Applied Catalysis A: General, 2008, 340: 169-175.
[19]  Song S, Liu Z W, He Z Q, Zhang A L, Chen J M, Yang Y P, Xu X H. Impacts of morphology and crystallite phases of titanium oxide on the catalytic ozonation of phenol [J]. Environmental Science and Technology, 2010, 44: 3913-3918.
[20]  Rosal R, Rodríguez A, Gonzalo M S, García-Calvo E. Catalytic ozonation of naproxen and carbamazepine on titanium dioxide [J]. Applied Catalysis B: Environmental, 2008, 84: 48-57.
[21]  Yang Y, Ma J, Qin Q, Zhai X. Degradation of nitrobenzene by nano-TiO2 catalyzed ozonation [J]. Journal of Molecular Catalysis A: Chemical, 2007, 267: 41-48.
[22]  Jerry C, Meryer P A, Marrone J W T. Acetic acid oxidation and hydrolysis supercritical water [J]. AIChE Journal, 1995, 41(9): 2108-2121.
[23]  Sellers R M. Spectrophotometric determination of hydrogen peroxide using potassium titanium (Ⅳ) oxalate [J]. The Analyst, 1980, 150(1255): 950-954.
[24]  Bader H, Hoigne J. Determination of ozone in water by the indigo method [J]. Water Research, 1981, 15(4): 449-456.
[25]  Merchant M, Hardy R, Williams S. Quantitative detection of superoxide ions in whole blood of the American alligator (alligator mississippiensis) [J]. Spectroscopy Letters, 2008, 41: 199-203.
[26]  Hulea V, Dumitriu E, Patcas F, Ropot R, Graffin Patrick, Moreau Patrice. Cyclopentene oxidation with H2O2 over Ti-containing zeolites [J]. Applied Catalysis A: General, 1998, 170: 169-175.
[27]  Casuscelli S G, Eimer G A, Canepa A, Heredia A C, Poncio C E, Crivello M E, Perez C F, Aguilar A, Herrero E R. Ti-MCM-41 as catalyst for a-pinene oxidation study of the effect of Ti content and H2O2 addition on activity and selectivity [J]. Catalysis Today, 2008, 133/134/135: 678-683.
[28]  Lanao M, Ormad M P, Ibarz C, Miguel N, Ovelleiro J L. Bactericidal effectiveness of O3, O3/H2O2 and O3/TiO2 on clostridium perfringens [J]. Ozone: Science & Engineering, 2008, 30(6): 431-438.
[29]  Moussavi G, Yazdanbakhsh A, Heidarizad M. The removal of formaldehyde from concentrated synthetic wastewater using O3/MgO/H2O2 process integrated with the biological treatment [J]. Journal of Hazardous Materials, 2009, 171(1/2/3): 907-913.
[30]  Staehelin J, Hoigne J. Decomposition of ozone in water in the presence of organic solutes acting as promoters and inhibitors of radical chain reactions [J]. Environmental Science and Technology, 1985, 19(12): 1206-1213.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133