全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2015 

核糖核酸开关用于微生物细胞工厂的智能与精细调控

DOI: 10.11949/j.issn.0438-1157.20150935, PP. 3811-2819

Keywords: 核糖核酸开关,微生物细胞工厂,精细调控,生物转化,优化,代谢工程,合成生物学

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用代谢工程与合成生物技术对细胞内复杂的代谢网络和调控网络进行重构和改造,以建立合成新化合物或提高目标产物产量的微生物细胞工厂是当今绿色化工技术发展的方向之一。微生物代谢途径的调控受环境和遗传的双重影响,细胞通过全局转录因子、信使分子和反馈抑制等方式响应环境变化来维持细胞的内稳态;同时细胞还受自身遗传基因线路的调控,在转录、翻译以及翻译后修饰过程中调控特定基因的表达。核糖核酸开关是一类调控基因线路表达的RNA元件,通过与金属离子、糖类衍生物、氨基酸、核酸衍生物以及辅酶等特异性配体结合发生的构象变化,从而启动或阻断mRNA的转录、翻译、拼接等过程来调控基因的表达。核糖核酸开关作为天然的生物感受器和效应器通过人工设计可成为微生物细胞工厂智能化和精细化调控的分子工具,并在化工、医药、环保、食品等领域得到广泛应用。

References

[1]  Wu Y, Li P, Zheng P, Zhou W, Chen N, Sun J. Complete genome sequence of Corynebacterium glutamicum B253, a Chinese lysine-producing strain [J]. J. Biotechnol., 2015, 4(207): 10-11.
[2]  Dae-Kyun Ro, Eric M Paradise, Jay D Keasling, et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast [J]. Nature, 2005, 440(7086): 940-943.
[3]  Patrick J Westfall, Douglas J Pitera, Jay D Keasling, et al. Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin [J]. Proc. Natl. Acad. Sci. USA, 2012, 109(3): E111-E118.
[4]  Jennewein S, Park H, DeJong J M, Long R M, Bollon A P, Croteau R B. Coexpression in yeast of Taxus cytochrome P450 reductase with cytochrome P450 oxygenases involved in Taxol biosynthesis [J]. Biotechnol. Bioeng., 2005, 89(5): 588-598.
[5]  Guo J, Zhou Y J, Hillwig M L, Huang L, et al. CYP76AH1 catalyzes turnover of miltiradiene in tanshinones biosynthesis and enables heterologous production of ferruginol in yeasts [J]. Proc. Natl. Acad. Sci. USA, 2013, 110(29): 12108-12113.
[6]  Gao Z X, Zhao H, Li Z M, Tan X M, Lu X F. Photosynthetic production of ethanol from carbon dioxide in genetically engineered cyanobacteria [J]. Energy & Environmental Science, 2012, 5(12): 9857-9865.
[7]  Lan E I, Liao J C. Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide [J]. Metabolic Engineering, 2011, 13(4): 353-363.
[8]  Meng D C, Wang Y, Wu L P, Shen R, Chen J C, Wu Q, Chen G Q. Production of poly (3-hydroxypropionate) and poly (3-hydroxybutyrate-co-3-hydroxypropionate) from glucose by engineering Escherichia coli [J]. Metab. Eng., 2015, 29: 189-195.
[9]  Jari M, Khatami S R, Galehdari H, Shafiei M. Cloning and expression of poly 3-hydroxybutyrate operon into Escherichia coli [J]. Jundishapur Journal of Microbiology, 2015, 8(2): e16318.
[10]  Nahvi A, Sudarsan N, Ebert M S, Zou X, Brown K L, Breaker R R. Genetic control by a metabolite binding mRNA [J]. ChemBiol., 2002, 9(9): 1043.
[11]  Winkler W C, Cohen-Chalamish S, Breaker R R. An mRNA structure that controls gene expression by binding FMN [J]. Proc. Natl. Acad. Sci. USA, 2002, 99: 15908-15913.
[12]  Mironov A S, Gusarov I, Rafikov R, Lopez L E, Shatalin K, Kreneva R A, Perumov D A, Nudler E. Sensing small molecules by nascent RNA: a mechanism to control transcription in bacteria [J]. Cell, 2002, 111: 747-756.
[13]  Breaker R R. Prospects for riboswitch discovery and analysis [J]. Molecular Cell, 2011, 43(6): 867-879.
[14]  Dann C E 3rd, Wakeman C A, Sieling C L, Baker S C, Irnov I, Winkler W C. Structure and mechanism of a metal-sensing regulatory RNA [J]. Cell, 2007, 130(5): 878-892.
[15]  Ramesh A, Winkler W C. Magnesium-sensing riboswitches in bacteria [J]. Journal of RNA Biol., 2010, 7: 77-83.
[16]  Chawla M, Credendino R, Poater A, Oliva R, Cavallo L. Structural stability, acidity, and halide selectivity of the fluoride riboswitch recognition site [J]. J. Am. Chem. Soc., 2015, 137(1): 299-306.
[17]  Furukawa K, Ramesh A, Zhou Z Y, Weinberg Z, Vallery T, Wade W C, Breaker R R. Bacterial riboswitches cooperatively bind Ni2+ or Co2+ ions and control expression of heavy metal transporters [J]. Molecular Cell, 2015, 57(6): 1088-1098.
[18]  McCown P J, Winkler W C, Breaker R R. Mechanism and distribution of glmS ribozymes [J]. Methods. Mol. Biol., 2012, 848: 113-129.
[19]  Soukup J K. The structural and functional uniqueness of the glmS ribozyme [J]. Catalytic Rna., 2013, 120: 173-193.
[20]  Mandal M, Lee M, Barrick J E, Weinberg Z, Emilsson G M, Ruzzo W L, Breaker R R. A glycine-dependent riboswitch that uses cooperative binding to control gene expression. [J]. Science, 2004, 306(5694): 275-279.
[21]  Mellin J R, Pascale Cossart. Unexpected versatility in bacterial riboswitches [J]. Trends in Genetics, 2015, 31(3): 150-156.
[22]  Wilson-Mitchell S N, Grundy F J, Henkin T M. Analysis of lysine recognition and specificity of the Bacillus subtilis L box riboswitch [J]. Nucleic Acids Res., 2012, 40(12): 5706-5717.
[23]  Furukawa K, Gu H, Sudarsan N, Hayakawa Y, Hyodo M, Breaker R R. Identification of ligand analogues that control c-di-GMP riboswitches [J]. ACS Chem. Biol., 2012, 7(8): 1436-1443.
[24]  Wachsmuth M, Findeiss S, Weissheimer N, Stadler P F, M?rl M. De novo design of a synthetic riboswitch that regulates transcription termination [J]. Nucleic Acids Res., 2013, 41(4): 2541-2551.
[25]  Desai S K, Gallivan J P. Genetic screens and selections for small molecules based on a synthetic riboswitch that activates protein translation [J]. Journal of the American Chemical Society, 2004, 126(41): 13247-13254.
[26]  Deigan K E, Ferré-D'Amaré A R. Riboswitches: discovery of drugs that target bacterial gene-regulatory RNAs [J]. Accounts of Chemical Research, 2011, 44(12): 1329-1338.
[27]  Li L. The biochemistry and physiology of metallic fluoride: action, mechanism, and implications [J]. Critical Reviews in Oral Biology & Medicine, 2003, 14(2): 100-114.
[28]  Barbier O, Arreola-Mendoza L, Del Razo L M. Molecular mechanisms of fluoride toxicity [J]. Chem. Biol. Interact., 2010, 188(2): 319-333.
[29]  Nelson J W, Zhou Z, Breaker R R. Gramicidin D enhances the antibacterial activity of fluoride [J]. Bioorg. Med. Chem. Lett., 2014, 24(13): 2969-2971.
[30]  Topp S, Gallivan J P. Guiding bacteria with small molecules and RNA [J]. J. Am. Chem. Soc., 2007, 129(21): 6807-6811.
[31]  Joshua K Michener, Christina D Smolke. High-throughput enzyme evolution in Saccharomyces cerevisiae using a synthetic RNA switch [J]. Metabolic Engineering, 2012, 14(4): 306-316.
[32]  Zhu X, Wang X, Zhang C, Wang X, Gu Q. A riboswitch sensor to determine vitamin B12 in fermented foods [J]. Journal of Food Chem., 2015, 15(175): 523-528.
[33]  Knudsen S M, Lee J, Ellington A D, Savran C A. Ribozyme-mediated signal augmentation on a aass-sensitive biosenser [J].J. Am. Chem. Soc., 2006, 128(50): 15936-15937.
[34]  Paige J S, Wu K Y, Jaffrey S R. RNA mimics of green fluorescent protein [J]. Science, 2011, 333(6042): 642-646.
[35]  Kellenberger C A, Wilson S C, Sales-Lee J, Hammond M C. RNA-based fluorescent biosensors for live cell imaging of second messengers cyclic di-GMP and cyclic AMP-GMP [J]. J. Am. Chem. Soc., 2013, 135(13): 4906-4909.
[36]  Sudarsan N, Lee E R, Weinberg Z, Moy R H, Kim J N, Link K H, Breaker R R. Riboswitches in eubacteria sense the second messenger cyclic di-GMP [J]. Science, 2008, 321: 411-413.
[37]  Lee E R, Baker J L, Weinberg Z, Sudarsan N, Breaker R. An allosteric self-splicing ribozyme triggered by a bacterial second messenger [J]. Science, 2010, 329(5993): 845-848.
[38]  Lai Shujuan, Zhang Yun, Liu Shuwen, Liang Yong, Shang Xiuling, Chai Xin, Wen Tingyi. Metabolic engineering and flux analysis of Corynebacterium glutamicum for L-serine production [J]. Science China Life Sciences, 2012, 55(4): 283-290.
[39]  Wang N, Ni Y, Shi F. Deletion of odhA or pyc improves production of γ-aminobutyric acid and its precursor L-glutamate in recombinant Corynebacterium glutamicum [J]. Biotechnol. Lett., 2015, 37(7): 1473-1481.
[40]  Shi X, Chen Y, Ren H, Liu D, Zhao T, Zhao N, Ying H. Economically enhanced succinic acid fermentation from cassava bagasse hydrolysate using Corynebacterium glutamicum immobilized in porous polyurethane filler [J]. Bioresour. Technol., 2014, 174: 190-197.
[41]  Tang J, Breaker R R. Rational design of allosteric ribozymes [J]. Chemistry & Biology, 1997, 4(6): 453-459.
[42]  Zhou L B, Zeng A P. Exploring lysine riboswitch for metabolic flux control and improvement of L-lysine synthesis in Corynebacterium glutamicum [J]. ACS Synth. Biol., 2015, 4(6): 729-734.
[43]  Yang J, Seo S W, Jang S, Shin S I, Lim C H, Roh T Y, Jung G Y. Synthetic RNA devices to expedite the evolution of metabolite-producing microbes [J]. Nat. Commun., 2013, 4: 1413.
[44]  Muranaka N, Sharma V, Nomura Y, Yokobayashi Y. An efficient platform for genetic selection and screening of gene switches in Escherichia coli [J]. Nucleic Acids Res., 2009, 37(5): e39.
[45]  Cimdins A, Klinkert B, Aschke-Sonnenborn U, Kaiser F M, Kortmann J, Narberhaus F. Translational control of small heat shock genes in mesophilic and Thermophilic cyanobacteria by RNA thermometers [J]. RNA Biol., 2014, 11(5): 594-608.
[46]  Fei X, Holmes T, Diddle J, Hintz L, Delaney D, Stock A, Renner D, McDevitt M, Berkowitz D B, Soukup J K. Phosphatase-inert glucosamine 6-phosphate mimics serve as actuators of the glmS riboswitch [J]. ACS Chem. Biol., 2014, 9(12): 2875-2882.
[47]  Bren A, Eisenbach M. How signals are heard during bacterial chemo taxis: protein-protein interactions in sensory signal propagation [J]. J. Bacteriol., 2000, 182(24): 6865-6873.
[48]  Strack R L, Jaffrey S R. New approaches for sensing metabolites and proteins in live cells using RNA [J]. Curr. Opin. Chem. Biol., 2013, 17(4): 651-655.
[49]  Nahvi A, Sudarsan N, Ebert M S, Zou X, Brown K L, Breaker R R. Genetic control by a metabolite binding mRNA [J]. Chem. Biol., 2002, 9(9): 1043-1049.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133