全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2015 

燃油碳烟颗粒的表面特性与润滑油黏度行为

DOI: 10.11949/j.issn.0438-1157.20150153, PP. 4123-4130

Keywords: 燃油,碳烟,表面特性,润滑油,黏度

Full-Text   Cite this paper   Add to My Lib

Abstract:

发动机燃油碳烟颗粒不可避免地会进入润滑油中,引起润滑油黏度的增长,从而影响发动机的润滑特性和使用性能。借助傅里叶红外光谱仪、X射线光电子能谱仪、全自动微孔物理吸附和化学吸附分析仪、光学法接触角/界面张力仪、Zeta电位仪等仪器,对比分析了生物质燃油碳烟颗粒(BS)和0#柴油碳烟颗粒(DS)的表面特性,探讨了BS和DS对液体石蜡(LP,润滑油基础油的模拟物)和碳烟分散体系的黏度的影响及碳烟表面特性对黏度的影响机理。结果表明,40℃时油品的相对黏度随碳烟浓度的增加呈指数函数增加,并且相同碳烟浓度下DS污染的油品相对黏度更大,高浓度碳烟污染的油品呈明显剪切稀化行为,DS污染的LP的黏度受剪切转速的影响更大。BS和DS表面主要元素是碳和氧,且BS氧含量高于DS,表面均带有一些含氧官能团。表面特性分析显示,DS的比表面积大于BS,表面能高于BS,亲油性弱于BS,致使DS在LP中比BS更易团聚成大颗粒,这是DS对润滑油黏度的影响大于BS的主要原因。

References

[1]  Daido S, Kodama Y, Inohara T, Ohyama N, Sugiyama T. Analysis of soot accumulation inside diesel engines [J]. JSAE Review, 2000, 21: 303-308.
[2]  Gautam M, Chitoor K, Durbha M, Summers J. Effect of diesel soot contaminated oil on engine wear—investigation of novel oil formulations [J]. Tribology International, 1999, 32 (12): 687-699.
[3]  Serrano-ruiz J C, Dumesie J A. Catalytic routes for the conversion of biomass into liquid hydrocarbon transportation fuels [J]. Energy & Environmental Science, 2011, 4 (1): 83-99.
[4]  Xu Yufu (徐玉福), Wang Qiongjie (王琼杰), Hu Xianguo (胡献国), Zhu Xifeng (朱锡锋). Preparation and tribological performance of micro-emulsified bio-oil [J]. Acta Petrolei Sinica :Petroleum Processing Section (石油学报 (石油加工)), 2009, 25 (s1): 53-56+85.
[5]  Xu Yufu (徐玉福), Hu Xianguo (胡献国), Yu Huiqiang (俞辉强), Zhang Danyang (张丹阳), Xue Teng (薛腾), Wei Xiaoyang (魏小洋). Effect of bio-oil on the tribological performance of engine cylinder [J]. Tribology (摩擦学学报), 2013, 33 (5): 514-521.
[6]  Zhang Bin (张斌), Hu Enzhu (胡恩柱), Liu Tianxia (刘天霞), Hu Xianguo (胡献国). Characterization of morphology, structure and composition of soot particles from biomass fuel [J]. CIESC Journal (化工学报), 2015, 66 (1): 441-448.
[7]  Patel M, Ricardo C L A, Scardi P,Aswath P B. Morphology, structure and chemistry of extracted diesel soot (Part Ⅰ): Transmission electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and synchrotron X-Ray diffraction study [J]. Tribology International, 2012, 52: 29-39.
[8]  La Rocca A, Liberto G D, Shayler P J, Fay M W. The nanostructure of soot-in-oil particles and agglomerates from an automotive diesel engine [J]. Tribology International, 2013,61: 80-87.
[9]  Liu Tianxia (刘天霞), Hu Enzhu (胡恩柱), Zhang Bing (张斌), Hu Xianguo (胡献国). On the dispersion characteristic of biofuel soot particles [J]. CIESC Journal (化工学报), 2015, 66 (4): 1506-1513.
[10]  Lou Jiangfeng (娄江峰), Zhang Hua (张华), Wang Ruixiang (王瑞祥), Li Meng (李萌). Effect of particle morphology and concentration on density and viscosity of graphite nanolubricant [J]. CIESC Journal (化工学报), 2014, 65 (10): 3846-3851.
[11]  George S, Balla S, Gautam V, Gautam M. Effect of diesel soot on lubricant oil viscosity [J]. Tribology International, 2007, 40: 809-818.
[12]  Ling Jinlong (凌锦龙), Xu Minghong (徐敏虹), Yu Lili (俞丽丽). Viscous behaviour and surface properties of binary mixture of ethyl acetate and isopropanol [J]. CIESC Journal (化工学报), 2012, 63 (1): 18-24.
[13]  Wang Qiongjie (王琼杰). Study of lubricity of modified bio-oil by pyrolysis liquefaction of biomass [D]. Hefei: Hefei University of Technology, 2009.
[14]  Shen Zhong (沈钟), Zhao Zhengguo (赵振国), Kang Wangli (康万利). Colloid and Surface Chemistry (胶体与表面化学) [M]. 4th ed. Beijing: Chemical Industry Press, 2012: 105-108.
[15]  Mahbubul I M, Saidur R, Amalina M A. Latest developments on the viscosity of nanofluids [J]. International Journal of Heat and Mass Transfer, 2012, 55:874-885.
[16]  Esangbedo C, Boehman A L, Perez J M. Characteristics of diesel engine soot that lead to excessive oil thickening [J]. Tribology International, 2012, 47: 194-203.
[17]  Zhang Hua (张华). Modern Organic Wave Spectrum Analysis (现代有机波谱分析) [M]. Beijing: Chemical Industry Press, 2005: 250-329.
[18]  Han Chong, Liu Yongchun, Liu Chang, Ma Jinzhu, He Hong. Influence of combustion conditions on hydrophilic properties and microstructure of flame soot [J]. The Journal of Physical Chemistry, 2012,116: 4129-4136.
[19]  Patel M, Aswath P B. Morphology, structure and chemistry of extracted diesel soot (Part Ⅱ): X-ray absorption near edge structure (XANES) spectroscopy and high resolution transmission electron microscopy [J]. Tribology International, 2012, 52: 17-28.
[20]  Williams A, Jones J M, Ma L, Pourkashanian M. Pollutants from the combustion of solid biomass fuels [J]. Progress in Energy Combustion Science, 2012, 38: 113-137.
[21]  Muller J O, Su D S, Wild U, Schlogl R. Bulk and surface structural investigations of diesel engine soot and carbon black [J]. Physical Chemistry Chemical Physics, 2007, 9: 4018-4025.
[22]  Nieto-gligorovski L, Net S, Gligorovski S, Zetzsch C, Jammoul A, Dannaa B, George C. Interactions of ozone with organic surface films in the presence of simulated sunlight: impact on wettability of aerosols [J]. Physical Chemistry Chemical Physics, 2008, 10, 2964-2971.
[23]  La Rocca A, Di Liberto G, Shayler P J, Parmenter C D J, Fay M W. Application of nanoparticle tracking analysis platform for the measurement of soot-in-oil agglomerates from automotive engines [J]. Tribology International, 2014, 70:142-147.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133