全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2014 

碳化硅泡沫陶瓷空气吸热器性能数值模拟

, PP. 0-0

Keywords: 空气吸热器,碳化硅泡沫陶瓷,动态仿真,Dymola软件,传热特性,数值模拟,数值分析

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于Dymola软件平台,建立了以碳化硅泡沫陶瓷为吸热体的塔式太阳能热发电用空气吸热器一维动态仿真模型。模型结合了Rosseland辐射传递方程,并考虑了空气物性随温度及压强的变化。使用Modelica语言编写程序,并由该语言对代数微分方程自动求解。通过分析仿真结果,剖析空气吸热器工作过程的传热特性,得出投射辐射能流密度、吸热体厚度、平均孔径等参数对空气、吸热体温度及系统到达稳定所需时间的影响,为该类空气吸热器的设计提供了理论依据。

References

[1]  Li Yonglin(李永林), Cao Keqiang(曹克强), Xu Haojun(徐浩军). Thermal-hydraulic Modeling and Simulation of Hydraulic System Based on Dymola[J] Journal of System Simulation(系统仿真学报), 2010, 22: 2043-2047
[2]  Ali Muzaffar, Vukovic Vladimir, Sahir Mukhtar Hussain. Energy analysis of chilled water system configurations using simulation-based optimization[J] Energ. Buildings, 2013, 59: 111-122
[3]  Felgner Felix, Exel Lukas, Nesarajah Marco. Component-Oriented Modeling of Thermoelectric Devices for Energy System Design[J] IEEE T. Ind. Electron., 2014, 61: 1301-1310
[4]  Steiner Alois, Rieberer Rene. Parametric analysis of the defrosting process of a reversible heat pump system for electric vehicles[J] Appl. Therm. Eng., 2013, 61: 393-400
[5]  Fuqiang Wang, Yong Shuai, Heping Tan, Chunliang Yu. Thermal performance analysis of porous media receiver with concentrated solar irradiation[J] Int. J. Heat. Mass. Tran., 2013, 62: 247-254
[6]  Fengwu Bai, Xin Li, Chun Chang, Zhifeng Wang. Thermal Performance Analysis of Silicon Carbide Ceramic Foam Used for Solar Air Receiver[R] Johannesburg: Solar World Congress, 2009
[7]  Zhiyong Wu, Cyril Caliot, Gilles Flamant, Zhifeng Wang. Coupled radiation and flow modeling in ceramic foam volumetric solar air receivers[J] Solar Energy, 2011, 85: 2374-2385.
[8]  Zhang H L, Baeyens J, Degreve J, Caceres G.. Concentrated solar power plants: Review and design methodology[J] Renew. Sust. Energ. Rev., 2013, 22: 466-481
[9]  Qiang Yu, Zhifeng Wang, Ershu. Simulation and analysis of the central cavity receiver's performance of solar thermal power tower plant[J] Solar Energy, 2012, 86: 164-174
[10]  Antonio L. Volumetric receivers in solar thermal power plants with central receiver system technology[J] Solar Energy, 2011, 85: 891-910
[11]  Avila-Marin Antonio L. Volumetric receivers in Solar Thermal Power Plants with Central Receiver System technology: A review[J] Solar Energy, 2011, 85: 891-910
[12]  Li Qi, Flamant Gilles, Yuan Xigang. Compact heat exchangers: A review and future applications for a new generation of high temperature solar receivers[J] Renew. Sust. Energ. Rev., 2011, 15: 4855-4875
[13]  Roldan M I, Smirnova O, Fend T. Thermal analysis and design of a volumetric solar absorber depending on the porosity[J] Renew. Energy, 2014, 62: 116-128
[14]  Fengwu Bai. One dimensional thermal analysis of silicon carbide ceramic foam used for solar air receiver[J] Int. J. Therm. Sci., 2010, 49: 2400-2404
[15]  Zhiyong Wu, Cyril Caliot, Gilles Flamant, Zhifeng Wang. Numerical simulation of convective heat transfer between air flow and ceramic foams to optimise volumetric solar air receiver performances[J] Int. J. Heat. Mass. Tran., 2011, 54: 1527-1537
[16]  Wu Zhiyong, Wang Zhifeng. Fully coupled transient modeling of ceramic foam volumetric solar air receiver[J] Solar Energy, 2013, 89: 122-133
[17]  Yau Hei Chan. Hybrid system modeling using Modelica and Dymola with applications to power system[D] Wisconsin: University of Wisconsin-Madison, 2005
[18]  Andrew Harley Woodruff. Camber Prevention Methods Using a Modelica/Dymola Multi-body Vehicle Model[D] Ontario: Queen's University, 2006
[19]  Michael Tiller. Introduction to Physical Modeling with Modelica[M] Norwell: Kluwer Academic Publishers, 2001: 4
[20]  Van Schijndel A. A review of the application of SimuLink S-functions to multi domain modelling and building simulation[J] J. Build. Perform. Simu., 2014, 7: 165-178

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133