Li Yonglin(李永林), Cao Keqiang(曹克强), Xu Haojun(徐浩军). Thermal-hydraulic Modeling and Simulation of Hydraulic System Based on Dymola[J] Journal of System Simulation(系统仿真学报), 2010, 22: 2043-2047
[2]
Ali Muzaffar, Vukovic Vladimir, Sahir Mukhtar Hussain. Energy analysis of chilled water system configurations using simulation-based optimization[J] Energ. Buildings, 2013, 59: 111-122
[3]
Felgner Felix, Exel Lukas, Nesarajah Marco. Component-Oriented Modeling of Thermoelectric Devices for Energy System Design[J] IEEE T. Ind. Electron., 2014, 61: 1301-1310
[4]
Steiner Alois, Rieberer Rene. Parametric analysis of the defrosting process of a reversible heat pump system for electric vehicles[J] Appl. Therm. Eng., 2013, 61: 393-400
[5]
Fuqiang Wang, Yong Shuai, Heping Tan, Chunliang Yu. Thermal performance analysis of porous media receiver with concentrated solar irradiation[J] Int. J. Heat. Mass. Tran., 2013, 62: 247-254
[6]
Fengwu Bai, Xin Li, Chun Chang, Zhifeng Wang. Thermal Performance Analysis of Silicon Carbide Ceramic Foam Used for Solar Air Receiver[R] Johannesburg: Solar World Congress, 2009
[7]
Zhiyong Wu, Cyril Caliot, Gilles Flamant, Zhifeng Wang. Coupled radiation and flow modeling in ceramic foam volumetric solar air receivers[J] Solar Energy, 2011, 85: 2374-2385.
[8]
Zhang H L, Baeyens J, Degreve J, Caceres G.. Concentrated solar power plants: Review and design methodology[J] Renew. Sust. Energ. Rev., 2013, 22: 466-481
[9]
Qiang Yu, Zhifeng Wang, Ershu. Simulation and analysis of the central cavity receiver's performance of solar thermal power tower plant[J] Solar Energy, 2012, 86: 164-174
[10]
Antonio L. Volumetric receivers in solar thermal power plants with central receiver system technology[J] Solar Energy, 2011, 85: 891-910
[11]
Avila-Marin Antonio L. Volumetric receivers in Solar Thermal Power Plants with Central Receiver System technology: A review[J] Solar Energy, 2011, 85: 891-910
[12]
Li Qi, Flamant Gilles, Yuan Xigang. Compact heat exchangers: A review and future applications for a new generation of high temperature solar receivers[J] Renew. Sust. Energ. Rev., 2011, 15: 4855-4875
[13]
Roldan M I, Smirnova O, Fend T. Thermal analysis and design of a volumetric solar absorber depending on the porosity[J] Renew. Energy, 2014, 62: 116-128
[14]
Fengwu Bai. One dimensional thermal analysis of silicon carbide ceramic foam used for solar air receiver[J] Int. J. Therm. Sci., 2010, 49: 2400-2404
[15]
Zhiyong Wu, Cyril Caliot, Gilles Flamant, Zhifeng Wang. Numerical simulation of convective heat transfer between air flow and ceramic foams to optimise volumetric solar air receiver performances[J] Int. J. Heat. Mass. Tran., 2011, 54: 1527-1537
[16]
Wu Zhiyong, Wang Zhifeng. Fully coupled transient modeling of ceramic foam volumetric solar air receiver[J] Solar Energy, 2013, 89: 122-133
[17]
Yau Hei Chan. Hybrid system modeling using Modelica and Dymola with applications to power system[D] Wisconsin: University of Wisconsin-Madison, 2005
[18]
Andrew Harley Woodruff. Camber Prevention Methods Using a Modelica/Dymola Multi-body Vehicle Model[D] Ontario: Queen's University, 2006
[19]
Michael Tiller. Introduction to Physical Modeling with Modelica[M] Norwell: Kluwer Academic Publishers, 2001: 4
[20]
Van Schijndel A. A review of the application of SimuLink S-functions to multi domain modelling and building simulation[J] J. Build. Perform. Simu., 2014, 7: 165-178