全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2014 

单乙醇胺吸收CO2的热力学模型和过程模拟

DOI: 10.3969/j.issn.0438-1157.2014.01.006, PP. 47-54

Keywords: CO2,吸收,热力学,模拟,单乙醇胺

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用非随机双流体电解质(ENRTL)热力学模型,通过拟合单乙醇胺(MEA)的饱和蒸气压、热容数据,MEA和水(H2O)二元体系的汽液平衡、热容、混合热数据,以及二氧化碳(CO2)在MEA水溶液中的溶解度数据,建立了MEA吸收CO2的热力学模型,并用核磁共振(NMR)组成数据成功地进行了验证。在此模型基础上,利用平衡级模型建立了MEA吸收/解吸CO2的过程模拟,利用文献中中试工厂数据验证了过程模拟的准确性。对于质量分数为30%的MEA溶液,固定吸收塔CO2去除率为90%的条件下,当吸收塔液气质量流率比值为2时,再沸器能耗最小,为3.64GJ·(tCO2)-1。

References

[1]  Chen C C, Evans L B. A local composition model for the excess gibbs energy of aqueous electrolyte systems[J]. AIChE Journal, 1986, 32(3): 444-454
[2]  IPCC. Climate Change 2007 — The Physical Science Basis, Summary for Policymakers of the Working Group I Report[R]. Cambridge: Cambridge University Press, 2007
[3]  Fei Weiyang(费维扬), Ai Ning(艾宁), Chen Jian(陈健). Capture and separation of greenhouse gases CO2 – the challenge and opportunity for separation technology[J]. Chem. Ind. & Eng. Prog. (化工进展), 2005, 24(1): 1-8 Ind. target="_blank">
[4]  Fei Weiyang(费维扬). Develop low-carbon economics, promote energy-saving and emission reduction[J]. Chem. Ind. & Eng. Prog. (化工进展), 2009, 28(suppl.):405 Ind. target="_blank">
[5]  Jing Yu(靖宇), Wei Li(韦力), Wang Yundong(王运东). The advances of adsorbents in the field of CO2 capture[J]. Chem. Ind. & Eng. Prog. (化工进展), 2011, 30(suppl.): 133-138
[6]  Tang Lina(康丽娜), Shang Huijian(尚会建), Zheng Xueming(郑学明). Progress of CO2 capture and storage and it's application prospects in China[J]. Chem. Ind. & Eng. Prog. (化工进展), 2010, 29 (suppl.): 24-27 Ind. target="_blank">
[7]  Zheng Que(郑碏), Dong Lihu(董立户), Chen Jian(陈健), Gao Guanghua(高光华), Fei Weiyang(费维扬). Absorption solubility calculation and process simulation for CO2 capture[J]. CIESC Journal(化工学报), 2010, 61(7): 1740-1746
[8]  Zhang Yaping(张亚萍), Liu Jianzhou(刘建周), Ji Qinqin(季芹芹), Luo Hongqing(罗红情), Wang Jianying(王剑英). Process simulation and optimization of flue gas CO2 capture by the alkanolamine solutions[J]. Chem. Ind. & Eng. Prog. (化工进展), 2013, 32(4): 930-935
[9]  Cousins A, Cottrell A, Lawson A, Huang S, Feron P H M. Model verification and evaluation of the rich-split process modification at an australian-based post combustion CO2 capture pilot plant[J]. Greenhouse Gas Sci. Technol., 2012, 2: 329-345
[10]  Edwards T J, Maurer G, Newman J, Prausnitz J M. Vapor-liquid equilibria in multicomponent aqueous solutions of volatile weak electrolytes[J]. AIChE Journal, 1978, 24(6): 966-976
[11]  Bates R G, Pinching G D. Acidic dissociation constant and related thermodynamic qantities for monoethanolammonium ion in water from 0 to 50℃[J]. J. Res. Natl. Bur. Stand. (U.S.), 1951, 46(5): 349-352
[12]  Austgen D M. A model of vapor-liquid equilibria for acid gas-alkanolamine-water systems[D]. Austin: The University of Texas at Austin, 1989
[13]  Chen C C, Britt H I, Boston J F, Evans L B. Extension and application of the pitzer equation for vapor-liquid equilibrium of aqueous electrolyte systems with molecular solutes[J]. AICHE J., 1979, 25: 820-831
[14]  Chiu L F, Liu H F, Li M H. Heat capacity of alkanolamines by differential scanning calorimetry[J]. J. Chem. Eng. Data, 1999, 44(4):631-636
[15]  Kim I, Svendsen H F, Borresen E. Ebulliometric determination of vapor-liqiud equilibria for pure water, monoethanolamine, N-methyldiethanolamine, 3-(methylamino)-propylamine, and their binary and ternary solutions[J]. J. Chem. Eng. Data, 2008, 53: 2521-2531
[16]  Belabbaci A, Razzouk A, Mokbel I, Jose J, Negadi L. Isothermal vapor-liquid equilibria of (monoethanolamine + water) and (4-methylmorpholine + water) binary systems at several temperatures[J]. J. Chem. Eng. Data, 2009, 54: 2312-2316
[17]  Chiu L F, Li M H. Heat capacity of alkanolamine aqueous solutions[J]. J. Chem. Eng. Data, 1999, 44: 1396-1401
[18]  Lee J I, Frederick D O, Mather A E. Equilibrium between carbon dioxide and aqueous monoethanolamine solutions[J]. J. Appl. Chem. Biotechnol., 1976, 26: 541-546
[19]  Jou F Y, Mather A E, Otto F D. The solubility of CO2 in a 30 mass percent monoethanolamine solution[J]. The Canadian Journal of Chemical Engineering, 1995, 73: 140-147
[20]  Ma'mum S, Nilsen R, Svendsen H F. Solubility of carbon dioxide in 30 mass% monoethanolamine and 50 mass% methyldiethanolamine solutions[J]. J. Chem. Eng. Data, 2005, 50: 630-634
[21]  Xu Q, Rochelle G. Total pressure and CO2 solubility at high temperature in aqueous amines[J]. Energy Procedia, 2011, 4: 117-124
[22]  Hilliard M D. A predictive thermodynamic model for an aqueous blend of potassium carbonate, piperazine, and monoethanolamine for carbon dioxide capture from flue gas[D]. Austin: The University of Texas at Austin, 2008
[23]  Jakobsen J P, Krane J, Svendsen H F. Liquid-phase composition determination in CO2-H2O-alkanolamine systems: an NMR study[J]. Ind. Eng. Chem. Res., 2005, 44: 9894-9903

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133