全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2014 

纳米碳纤维的微观结构调控与催化作用

DOI: 10.3969/j.issn.0438-1157.2014.01.003, PP. 22-31

Keywords: 纳米碳纤维,微观结构,催化剂,成型,载体

Full-Text   Cite this paper   Add to My Lib

Abstract:

纳米碳纤维(CNF)是一种新型一维结构纳米炭材料,因其具有许多独特的性质而备受研究者关注。按照CNF基本结构单元石墨片层与生长轴的夹角不同,可以将CNF分为板式、鱼骨式和管式3种不同微观结构。采用催化化学气相沉积法合成CNF时,微观结构可以通过改变生长动力学进行调控。CNF微观结构的不同导致表面棱边与基面原子比例不同,进而影响着表面含氧基团分布等性质。当CNF用作催化剂载体时,利用这些性质的不同可以调控负载金属颗粒的形貌以及载体与金属作用力等性质,从而改变催化剂的性能。CNF自身具有催化活性,其活性主要来自表面杂原子基团,因此也与CNF的微观结构密切相关。

References

[1]  de Jong K P, Geus J W. Carbon nanofibers:catalytic synthesis and applications[J].Catalysis Reviews-Science and Engineering, 2000, 42(4):481-510
[2]  Tessonnier J P, Su D S. Recent progress on the growth mechanism of carbon nanotubes: a review[J]. ChemSusChem, 2011, 4(7):824-847
[3]  Li Y D, Li D X, Wang G W. Methane decomposition to COx-free hydrogen and nano-carbon material on group 8—10 base metal catalysts:a review[J]. Catalysis Today, 2011, 162(1):1-48
[4]  Tibbetts G G, Lake M L, Strong K L, Rice B P. A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites[J]. Composites Science and Technology, 2007, 67(7/8): 1709-1718
[5]  Ledoux M J, Vieira R, Pham-Huu C, Keller N. New catalytic phenomena on nanostructured (fibers and tubes) catalysts[J]. Journal of Catalysis, 2003, 216(1/2):333-342
[6]  Bitter J H. Nanostructured carbons in catalysis a janus material—industrial applicability and fundamental insights[J]. Journal of Materials Chemistry, 2010, 20(35):7312-7321
[7]  Li P, Li T, Zhou J H, Sui Z J, Dai Y C, Yuan W K, Chen D. Synthesis of carbon nanofiber/graphite-felt composite as a catalyst[J]. Microporous and Mesoporous Materials, 2006, 95(1/2/3):1-7
[8]  Vieira R, Bernhardt P, Ledoux M J, Pham-Huu C. Performance comparison of IR/CNF and IR/Al2O3 catalysts in a 2 n hydrazine microthruster[J].Catalysis Letters, 2005, 99(3/4):177-180
[9]  Cao Y J, Li P, Zhou J H, Sui Z J, Zhou X G. Hydrodynamics and mass transfer in carbon-nanofiber/graphite-felt composite under two-phase flow conditions[J]. Chemical Engineering and Processing, 2011, 50(10):1108-1114
[10]  Cao Y J, Li P, Zhou J H, Sui Z J, Zhou X G. Pressure drop and residence time distribution in carbon-nanofiber/graphite-felt composite for single liquid-phase-flow[J]. Industrial & Engineering Chemistry Research, 2011, 50(15):9431-9436
[11]  Cao Y J, Li P, Zhou J H, Sui Z J, Zhou X G, Yuan W K. Pressure drop of structured packing of carbon nanofiber composite[J]. Industrial & Engineering Chemistry Research, 2010, 49(8):3944-3951
[12]  Su D S, Zhang J, Frank B, Thomas A, Wang X C, Paraknowitsch J, Schlogl R. Metal-free heterogeneous catalysis for sustainable chemistry[J]. ChemSusChem, 2010, 3(2):169-180
[13]  Zhu J, Holmen A, Chen D. Carbon nanomaterials in catalysis:proton affinity, chemical and electronic properties, and their catalytic consequences[J].Chemcatchem, 2013, 5(2):378-401
[14]  Rodriguez N M, Chambers A, Baker R T K. Catalytic engineering of carbon nanostructures[J].Langmuir, 1995, 11(10):3862-3866
[15]  Li Zhentao(李振涛), Dong Qiang(董强), Liu Hong(刘红), Qiu Jieshan(邱介山). Preparation and characterization of single-wailed carbon nanotubes from taixi anthracite[J].CIESC Journal, 2010, 61(4):1040-1046
[16]  Inagaki M, Yang Y, Kang F Y. Carbon nanofibers prepared via electrospinning[J]. Advanced Materials, 2012, 24(19):2547-2566
[17]  Chesnokov V V, Buyanov R A. The formation of carbon filaments upon decomposition of hydrocarbons catalysed by iron group metals and their alloys[J].Uspekhi Khimii, 2000, 69(7):675-692
[18]  Al-Saleh M H, Sundararaj U. A review of vapor grown carbon nanofiber/polymer conductive composites[J]. Carbon, 2009, 47(1):2-22
[19]  Zhou J H, Sui Z J, Li P, Chen D, Dal Y C, Yuan W K. Structural characterization of carbon nanofibers formed from different carbon-containing gases[J]. Carbon, 2006, 44(15):3255-3262
[20]  Zhao T J, Zhu Y, Li P, Chen D, Dai Y C, Yuan W K, Holmen A. Effect of active metal composition on the yield and microstructure of carbon nanofiber[J].Chinese Journal of Catalysis, 2004, 25(10):829-833
[21]  Lu W X, Sui Z J, Zhou J H, Li P, Chen D, Zhou X G. Kinetically controlled synthesis of carbon nanofibers with different morphologies by catalytic CO disproportionation over iron catalyst[J]. Chemical Engineering Science, 2010, 65(1):193-200
[22]  Sui Z J, Sun Y F, Zhou J H, Li P, Chen D, Zhou X G. Catalytic vapor decomposition of methane over nickle catalyst:growth rate and the corresponding microstructures of carbon nanofibers[J]. Journal of Chemical Engineering of Japan, 2009, 42(Suppl. 1):204-211
[23]  Duan X Z, Qian G, Zhou X G, Sui Z J, Chen D, Yuan W K. Tuning the size and shape of Fe nanoparticles on carbon nanofibers for catalytic ammonia decomposition[J]. Applied Catalysis B-Environmental, 2011, 101(3/4):189-196
[24]  Duan X Z, Qian G, Zhou J H, Zhou X G, Chen D, Yuan W K. Flat interface mediated synthesis of platelet carbon nanofibers on Fe nanoparticles[J]. Catalysis Today, 2012, 186(1):48-53
[25]  Ji J, Duan X Z, Qian G, Zhou X G, Chen D, Yuan W K. In situ production of Ni catalysts at the tips of carbon nanofibers and application in catalytic ammonia decomposition[J]. Industrial & Engineering Chemistry Research, 2013, 52(5):1854-1858
[26]  Duan X Z, Ji J, Qian G, Fan C, Zhu Y, Zhou X G, Chen D, Yuan W K. Ammonia decomposition on Fe(110), Co(111) and Ni(111) surfaces:a density functional theory study[J]. Journal of Molecular Catalysis A-Chemical, 2012, 357:81-86
[27]  Christensen K O, Chen D, Lodeng R, Holmen A. Effect of supports and Ni crystal size on carbon formation and sintering during steam methane reforming[J]. Applied Catalysis A-General, 2006, 314(1): 9-22
[28]  Zhu Y A, Dai Y C, Chen D, Yuan W K. First-principles study of C chemisorption and diffusion on the surface and in the subsurfaces of Ni(111) during the growth of carbon nanofibers[J]. Surface Science, 2007, 601(5):1319-1325
[29]  Zhu Y A, Dai Y C, Chen D, Yuan W K. First-principles study of carbon diffusion in bulk nickel during the growth of fishbone-type carbon nanofibers[J]. Carbon, 2007, 45(1):21-27
[30]  Zhu Y A, Zhou X G, Chen D, Yuan W K. First-principles study of C adsorption and diffusion on the surfaces and in the subsurfaces of nonreconstructed and reconstructed Ni(100)[J].Journal of Physical Chemistry C, 2007, 111(8):3447-3453
[31]  Helveg S, Lopez-Cartes C, Sehested J, Hansen P L, Clausen B S, Rostrup-Nielsen J R, Abild-Pedersen F, Norskov J K. Atomic-scale imaging of carbon nanofibre growth[J]. Nature, 2004, 427(6973): 426-429
[32]  Sun Y F, Sui Z J, Zhou J H, Li P, Zhou X G, Chen D. Catalytic decomposition of methane over supported Ni catalysts with different particle sizes[J].Asia-Pacific Journal of Chemical Engineering, 2009, 4(5):814-820
[33]  Lu W X, Sui Z J, Zhou J H, Li P, Zhou X G, Chen D. Effect of hydrogen on the synthesis of carbon nanofibers by Co disproportionation on ultrafine Fe3O4[J]. Asia-Pacific Journal of Chemical Engineering, 2009, 4(5):590-595
[34]  Pan X L, Bao X H. The effects of confinement inside carbon nanotubes on catalysis[J]. Accounts of Chemical Research, 2011, 44(8):553-562
[35]  Serp P, Castillejos E. Catalysis in carbon nanotubes[J]. Chemcatchem, 2010, 2(1):41-47
[36]  Cheng H Y, Zhu Y A, Sui Z J, Zhou X G, Chen D. Modeling of fishbone-type carbon nanofibers with cone-helix structures[J]. Carbon, 2012, 50(12):4359-4372
[37]  Zhu Y A, Sui Z J, Zhao T J, Dai Y C, Cheng Z M, Yuan W K. Modeling of fishbone-type carbon nanofibers:a theoretical study[J]. Carbon, 2005, 43(8):1694-1699
[38]  Zhou J H, Sui Z J, Zhu J, Li P, De C, Dai Y C, Yuan W K. Characterization of surface oxygen complexes on carbon nanofibers by TPD, XPS and FT-IR[J]. Carbon, 2007, 45(4):785-796
[39]  Zhu J, Zhao T J, Kvande I, Chen D, Zhou X G, Yuan W K. Carbon nanofiber-supported Pd catalysts for Heck reaction:effects of support interaction[J]. Chinese Journal of Catalysis, 2008, 29(11):1145-1151
[40]  Kvande I, Zhu J, Zhao T J, Hammer N, Ronning M, Raaen S, Walmsley J C, Chen D. Importance of oxygen-free edge and defect sites for the immobilization of colloidal Pt oxide particles with implications for the preparation of CNF-supported catalysts[J]. Journal of Physical Chemistry C, 2010, 114(4):1752-1762
[41]  Tessonnier J P, Pesant L, Ehret G, Ledoux M J, Pham-Huu C. Pd nanoparticles introduced inside multi-walled carbon nanotubes for selective hydrogenation of cinnamaldehyde into hydrocinnamaldehyde[J]. Applied Catalysis A-General, 2005, 288(1/2):203-210
[42]  Li C H, Yu Z X, Yao K F, Ji S F, Liang J. Nitrobenzene hydrogenation with carbon nanotube-supported platinum catalyst under mild conditions[J].Journal of Molecular Catalysis A-Chemical, 2005, 226(1):101-105
[43]  Zhu J, Zhou J H, Zhao T J, Zhou X G, Chen D, Yuan W K. Carbon nanofiber-supported palladium nanoparticles as potential recyclable catalysts for the Heck reaction[J]. Applied Catalysis A-General, 2009, 352(1/2):243-250
[44]  Zhao L, Zhou J H, Sui Z J, Zhou X G. Hydrogenolysis of sorbitol to glycols over carbon nanofiber supported ruthenium catalyst[J]. Chemical Engineering Science, 2010, 65(1):30-35
[45]  Wang H, Zhu L, Peng S, Peng F, Yu H, Yang J. High efficient conversion of cellulose to polyols with Ru/CNTs as catalyst[J]. Renewable Energy, 2012, 37(1):192-196
[46]  Deng W, Liu M, Tan X, Zhang Q, Wang Y. Conversion of cellobiose into sorbitol in neutral water medium over carbon nanotube-supported ruthenium catalysts[J]. Journal of Catalysis, 2010, 271(1):22-32
[47]  Zhou Q, Li P, Wang X L, Zhou X G, Yang D J, Chen D. Preparation of CNF-supported Pt catalysts for hydrogen evolution from decalin[J]. Materials Chemistry and Physics, 2011, 126(1/2):41-45
[48]  Antolini E. Carbon supports for low-temperature fuel cell catalysts[J]. Applied Catalysis B-Environmental, 2009, 88(1/2):1-24
[49]  Cheng H M, Yang Q H, Liu C. Hydrogen storage in carbon nanotubes[J]. Carbon, 2001, 39(10):1447-1454
[50]  Sharma S, Pollet B G. Support materials for PEMFC and DMFC electrocatalysts—a review[J]. Journal of Power Sources, 2012, 208:96-119
[51]  Pham-Huu C, Keller N, Charbonniere L J, Ziessle R, Ledoux M J. Carbon nanofiber supported palladium catalyst for liquid-phase reactions. An active and selective catalyst for hydrogenation of C C bonds[J]. Chemical Communications, 2000(19):1871-1872
[52]  Zhou J H, Sui Z J, Li P, Dai Y C, Yuan W K. The wettability of carbon nanofibers[J]. New Carbon Materials, 2006, 21(4):331-336
[53]  Radovic L R, Bockrath B. On the chemical nature of graphene edges:origin of stability and potential for magnetism in carbon materials[J]. Journal of the American Chemical Society, 2005, 127(16): 5917-5927
[54]  Zhao T J, De C, Dai Y C, Yuan W K, Holmen A. The effect of graphitic platelet orientation on the properties of carbon nanofiber supported Pd catalysts prepared by ion exchange[J]. Topics in Catalysis, 2007, 45(1/2/3/4):87-91
[55]  Sanz-Navarro C F, Astrand P O, Chen D, Ronning M, van Duin A C T, Goddard W A Ⅲ. Molecular dynamics simulations of metal clusters supported on fishbone carbon nanofibers[J]. Journal of Physical Chemistry C, 2010, 114(8):3522-3530
[56]  Sanz-Navarro C F, Astrand P O, Chen D, Ronning M, van Duin A C T, Jacob T, Goddard W A Ⅲ. Molecular dynamics simulations of the interactions between platinum clusters and carbon platelets[J]. Journal of Physical Chemistry A, 2008, 112(7):1392-1402
[57]  Sanz-Navarro C F, Astrand P O, Chen D, Ronning M, van Duin A C T, Mueller J E, Goddard W A Ⅲ. Molecular dynamics simulations of carbon-supported Ni clusters using the reax reactive force field[J]. Journal of Physical Chemistry C, 2008, 112(33):12663-12668
[58]  Zhao T J, Chen D, Dai Y C, Yuan W K, Holmen A. Synthesis of dimethyl oxalate from Co and CH3ONO on carbon nanofiber supported palladium catalysts[J].Industrial & Engineering Chemistry Research, 2004, 43(16):4595-4601
[59]  Torres Galvis H M, Bitter J H, Khare C B, Ruitenbeek M, Dugulan A I, de Jong K P. Supported iron nanoparticles as catalysts for sustainable production of lower olefins[J].Science (New York, NY), 2012, 335(6070):835-838
[60]  Zhou J H, Sui Z J, Zhou X G, Yuan W K. Palladium catalysts supported on fishbone carbon nanofibers from different carbon sources[J].Chinese Journal of Catalysis, 2008, 29(11):1107-1112
[61]  Kochubey D I, Chesnokov V V, Malykhin S E. Evidence for atomically dispersed Pd in catalysts supported on carbon nanofibers[J].Carbon, 2012, 50(8):2782-2787
[62]  Park C, Baker R T K. Catalytic behavior of graphite nanofiber supported nickel particles(Ⅲ):The effect of chemical blocking on the performance of the system[J]. Journal of Physical Chemistry B, 1999, 103(13):2453-2459
[63]  Keller N, Maksimova N I, Roddatis V V, Schur M, Mestl G, Butenko Y V, Kuznetsov V L, Schlogl R. The catalytic use of onion-like carbon materials for styrene synthesis by oxidative dehydrogenation of ethylbenzene[J].Angewandte Chemie-International Edition, 2002, 41(11):1885-1888
[64]  Zhang J, Liu X, Blume R, Zhang A H, Schlogl R, Su D S. Surface- modified carbon nanotubes catalyze oxidative dehydrogenation of n-butane[J].Science, 2008, 322(5898):73-77
[65]  Sui Z J, Zhou J H, Dai Y C, Yuan W K. Oxidative dehydrogenation of propane over catalysts based on carbon nanofibers[J].Catalysis Today, 2005, 106(1/2/3/4):90-94
[66]  Liu X, Frank B, Zhang W, Cotter T P, Schlogl R, Su D S. Carbon-catalyzed oxidative dehydrogenation of n-butane:selective site formation during sp(3)-to-sp(2) lattice rearrangement[J]. Angewandte Chemie-International Edition, 2011, 50(14):3318-3322
[67]  Zhao T J, Sun W Z, Gu X Y, Ronning M, Chen D, Dai Y C, Yuan W K, Holmen A. Rational design of the carbon nanofiber catalysts for oxidative dehydrogenation of ethylbenzene[J].Applied Catalysis A-General, 2007, 323:135-146
[68]  Zhang J, Su D S, Zhang A H, Wang D, Schlogl R, Hebert C. Nanocarbon as robust catalyst:mechanistic insight into carbon- mediated catalysis[J].Angewandte Chemie-International Edition, 2007, 46(38):7319-7323
[69]  Tessonnier J P, Villa A, Majoulet O, Su D S, Schlogl R. Defect- mediated functionalization of carbon nanotubes as a route to design single-site basic heterogeneous catalysts for biomass conversion[J]. Angewandte Chemie-International Edition, 2009, 48(35):6543-6546
[70]  Villa A, Tessonnier J P, Majoulet O, Su D S, Schlogl R. Amino-functionalized carbon nanotubes as solid basic catalysts for the transesterification of triglycerides[J]. Chemical Communications, 2009(29):4405-4407
[71]  Pham-Huu C, Ledoux M J. Carbon nanomaterials with controlled macroscopic shapes as new catalytic materials[J].Topics in Catalysis, 2006, 40(1/2/3/4):49-63
[72]  Li P, Zhao T J, Zhou J H, Sui Z J, Dai Y C, Yuan W K. Characterization of carbon nanofiber composites synthesized by shaping process[J].Carbon, 2005, 43(13):2701-2710

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133