全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2014 

振动诱导微结构粗糙表面水滴Wenzel-Cassie状态转变特性

DOI: 10.3969/j.issn.0438-1157.2014.02.025, PP. 544-549

Keywords: 表面,振动,水滴,浸润转变,实验验证,模型

Full-Text   Cite this paper   Add to My Lib

Abstract:

以聚二甲基硅氧烷(PDMS)基底采用光刻蚀技术制备了微方柱结构粗糙表面。采用高速摄影对液滴在垂直振动作用下的动态浸润状态进行了图像采集。通过对水滴振动过程中的动态浸润特性分析,研究了粗糙表面水滴的Wenzel-Cassie浸润状态转变特征。结果表明,对于一定尺寸的Wenzel状态水滴,只有当施加的振动能量超过某一阈值时,微方柱粗糙表面Wenzel状态液滴才可以发生向Cassie状态的完全转变,且存在发生Wenzel-Cassie浸润转变的阈值范围;此外,当外加振动频率和液滴固有频率一致时,即在共振频率时,液滴发生Wenzel-Cassie状态转变需要的能量最小。外加振动频率偏离液滴固有频率越远,发生Wenzel-Cassie状态转变需要的能量最大。基于表面化学和振动力学理论,建立了液滴发生Wenzel-Cassie转变时的物理模型。

References

[1]  Zhang X, Shi F, Niu J, Jiang Y G, Wang Z Q. Superhydrophobic surfaces: from structural control to functional application[J]. Journal of Materials Chemistry, 2008, 18(6):621-633
[2]  Jung Y C, Bhushan B. Dynamic effects induced transition of droplets on biomimetic superhydrophobic surfaces[J]. Langmuir, 2009, 25(16): 9208-9218
[3]  Noblin X, Buguin A, Brochard-Wyart F. Vibrated sessile drops: transition between pinned and mobile contact line oscillations[J]. The European Physical Journal E, 2004, 14(4): 395-404
[4]  Marmur A. Wetting on hydrophobic rough surfaces: to be heterogeneous or no to be?[J]. Langmuir, 2003, 19(20): 8343-8348
[5]  Teng Xinrong(滕新荣). Physical Chemistry of Surfaces(表面物理化学)[M]. Beijing: Chemical Industry Press, 2009: 31-32
[6]  Rose J W. Dropwise condensation theory and experiment: a review[J]. Proc. Inst. Mech. Eng., Part A: Journal of Power and Energy, 2002, 216(2): 115-128
[7]  Ma X H, Rose J W, Xu D Q, et al. Advances in dropwise condensation heat transfer—Chinese research[J]. Chemical Engineering Journal, 2000, 78(2/3): 87-93
[8]  Liao Qiang(廖强), Gu Yangbiao(顾扬彪), Zhu Xun(朱恂), Wang Hong(王宏). Dropwise condensation heat transfer on surface with gradient surface energy [J]. Journal of Chemical Industry and Engineering (China) (化工学报), 2007, 58(3): 567-574
[9]  Huo Subin(霍素斌), Yu Zhijia(于志家), Li Yangfeng(李艳峰), Liu Yun(刘芸), Sun Xiangyu(孙相彧), Song Shanpeng(宋善鹏). Flow characteristics of water in microchannel with super-hydrophobic surface[J]. Journal of Chemical Industry and Engineering (China) (化工学报), 2007, 58(11): 2721-2725
[10]  Rothstein J P. Slip on superhydrophobic surfaces[J]. Annual Review of Fluid Mechanics, 2010, 42:89-109
[11]  Cheng Y T, Rodak D E. Is the lotus leaf superhydrophobic? [J]. Applied Physics Letters, 2005, 86(14): 144101-1
[12]  Cheng Y T, Rodak D E, Angelopoulos A, et al. Microscopic observations of condensation of water on lotus leaves[J]. Appl. Phys. Lett., 2005, 87(19): 194112-1
[13]  Ishino C, Okumura K, Quéré D. Wetting transitions on rough surfaces[J]. Europhys. Lett. ,2004 , 68(3): 419-425
[14]  Patankar N A. Transition between superhydrophobic states on rough surfaces[J]. Langmuir, 2004, 20(17): 7097-7102
[15]  Zhang J L, Li J A, Han Y C. Superhydrophobic PTFE surfaces by extension[J]. Macromolecular Rapid Communications, 2004, 25(11): 1105-1108
[16]  Chung J Y, Youngblood J, Stafford C. Anisotropic wetting on tunable micro-wrinkled surfaces[J]. Soft Matter., 2007, 3: 1163-1169
[17]  Dorrer C, Rühe J. Condensation and wetting transitions on microstructured ultrahydrophobic surfaces[J]. Langmuir, 2007, 23(7): 3820-3824
[18]  Krupenkin T N, Taylor J A, Wang E N, et al. Reversible wetting-dewetting transitions on electrically tunable superhydrophobic nanostructured surfaces[J]. Langmuir, 2007, 23(7): 9128-9133
[19]  Dhindsa M S, Smith N R, Heikenfeld J. Reversible electrowetting of vertically aligned superhydrophobic carbon nanofibers[J]. Langmuir, 2006, 22(21): 9030-9034
[20]  Bahadur V, Garimella S V. Electrowetting-based control of droplet transition and morphology on artificially microstructured surfaces[J]. Langmuir, 2008, 24 (15): 8338-8345
[21]  Jiang Lei(江雷). Dual-responsive tungsten oxide film of wettability and photochromism [J]. China Basic Science(中国基础科学), 2007,3: 22-23
[22]  Gras S L, Mahmud T, Rosengarten G, et al. Intelligent control of surface hydrophobicity[J]. Chem. Phys. Chem., 2007, 8(14): 2036-2050
[23]  Chung J Y, Youngblood J, Stafford C. Anisotropic wetting on tunable micro-wrinkled surfaces[J]. Soft Matter., 2007, 3(9): 1163-1169
[24]  Motornov M, Minko S, Eichhorn K J, et al. Reversible tuning of wetting behavior of polymer surface with responsive polymer brushes[J]. Langmuir, 2003, 19(19): 8077-8085
[25]  Lafuma A, Quéré D. Superhydrophobic states[J]. Nature Materials, 2003, 2(7): 457-460
[26]  Liu B, Lange F F. Pressure induced transition between superhydrophobic states: configuration diagrams and effect of surface feature size[J]. Journal of Colloid and Interface Science, 2006, 298(2): 899-909
[27]  Bormashenko E, Pogreb R, Whyman G, et al. Vibration-induced Cassie-Wenzel wetting transition on rough surfaces[J]. Appl. Phys. Lett., 2007, 90(20): 201917-1
[28]  Bormashenko E, Pogreb R, Whyman G, et al. Resonance Cassie-Wenzel wetting transition for horizontally vibration drops deposited on a rough surface[J]. Langmuir, 2007, 23(24): 12217-12221
[29]  Boreyko J B, Chen C H. Restoring superhydrophobicity of lotus leaves with vibration-induced dewetting[J]. Physical Review Letters, 2009, 103(17): 174502-1

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133