全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2014 

原核微生物菌群的空间分异增强秸秆-猪粪混合发酵效率

DOI: 10.3969/j.issn.0438-1157.2014.05.033, PP. 1792-1799

Keywords: 发酵,秸秆,猪粪,16S,rRNA扩增子高通量测序,原核微生物群落

Full-Text   Cite this paper   Add to My Lib

Abstract:

秸秆与禽畜粪便混合发酵既可增强反应器稳定性又能提高发酵产气效率。然而关于秸秆附着菌群、发酵液菌群的时空动态变化,以及它们与产气效率、环境变量的关系仍然未被全部揭示。采用16SrRNA基因扩增子高通量测序技术,对这一问题进行了研究。结果显示,秸秆猪粪混合发酵能够改善沼气发酵的效率。原核微生物群落在空间上的差异分布可能有助于提升系统的效率。在产气高效的系统中,秸秆吸附菌群如Treponema、ClostridiumⅢ、Alkaliflexus和Fibrobacter是主要的纤维素降解菌,提供底物给产酸菌。丙酸是发酵液中含量最丰富的挥发性脂肪酸(VFAs),Pelotomaculum可能是该系统主要的丙酸氧化菌,它们与Methanoculleus、Methanosarcina和Methanosaeta协同作用通过二氧化碳/氢营养型和乙酸营养型产甲烷途径,将包括丙酸在内的VFAs最终转化成甲烷。参与氨基酸代谢的Aminobacterium和Cloacibacillus广泛分布于发酵液中,表明蛋白质是一种重要的发酵底物,说明VFAs尤其是丙酸和氨基酸的互营代谢可能是秸秆猪粪混合发酵系统的重要过程。这些结果表明,功能菌群的空间分化、稳定的秸秆降解菌群和发酵液菌群的弹性变化有助于维持秸秆猪粪混合发酵系统的稳定性和提高发酵效率。

References

[1]  Munk B, Bauer C, Gronauer A, and Lebuhn M. Population dynamics of methanogens during acidification of biogas fermenters fed with maize silage[J] . Eng. Life Sci., 2010, 10(6): 496-508
[2]  Mao Y J, Yannarell A C, and Mackie R I. Changes in N-transforming archaea and bacteria in soil during the establishment of bioenergy crops[J] . PLoS One, 2011, 6(9): e24750
[3]  Sundberg C, Al-Soud W A, Larsson M, Alm E, Shakeri Yekta S, Svensson B H, Sorensen S J, and Karlsson A. 454-Pyrosequencing Analyses of Bacterial And Archaeal Richness In 21 Full-Scale Biogas Digesters[J] . FEMS Microbiol. Ecol., 2013: 1-15
[4]  Zakrzewski M, Goesmann A, Jaenicke S, Junemann S, Eikmeyer F, Szczepanowski R, Al-Soud W A, Sorensen S, Puhler A, and Schluter A. Profiling of the metabolically active community from a production-scale biogas plant by means of high-throughput metatranscriptome sequencing[J] . J. Biotechnol., 2012, 158(4): 248-258
[5]  Krause L, Diaz N N, Edwards R A, Gartemann K H, Kromeke H, Neuweger H, Puhler A, Runte K J, Schluter A, Stoye J, Szczepanowski R, Tauch A, and Goesmann A. Taxonomic composition and gene content of a methane-producing microbial community isolated from a biogas reactor[J] . J. Biotechnol., 2008, 136(1-2): 91-101
[6]  Supaphol S, Jenkins S N, Intomo P, Waite I S, and O'Donnell A G. Microbial community dynamics in mesophilic anaerobic co-digestion of mixed waste[J] . Bioresour. Technol., 2011, 102(5): 4021-4027
[7]  Li A, Chu Y, Wang X, Ren L, Yu J, Liu X, Yan J, Zhang L, Wu S, and Li S. A pyrosequencing-based metagenomic study of methane-producing microbial community in solid-state biogas reactor[J] . Biotechnol. Biofuels., 2013, 6(1): 3-17
[8]  Wagner A O, Lins P, Malin C, Reitschuler C, and Illmer P. Impact of protein-, lipid- and cellulose-containing complex substrates on biogas production and microbial communities in batch experiments[J] . Sci. Total. Environ., 2013, 458-460: 256-266
[9]  Westerholm M, Hansson M, and Schnurer A. Improved biogas production from whole stillage by co-digestion with cattle manure[J] . Bioresour. Technol., 2012, 114: 314-319
[10]  Hanreich A, Schimpf U, Zakrzewski M, Schluter A, Benndorf D, Heyer R, Rapp E, Puhler A, Reichl U, and Klocke M. Metagenome and metaproteome analyses of microbial communities in mesophilic biogas-producing anaerobic batch fermentations indicate concerted plant carbohydrate degradation[J] . Syst. Appl. Microbiol., 2013, 36(5): 330-338
[11]  Tzollas N M, Zachariadis G A, Anthemidis A N, and Stratis J A. A new approach to indophenol blue method for determination of ammonium in geothermal waters with high mineral content[J] . Int. J. Environ. Anal. Chem., 2010, 90(2): 115-126
[12]  Rademacher A, Zakrzewski M, Schluter A, Schonberg M, Szczepanowski R, Goesmann A, Puhler A, and Klocke M. Characterization of microbial biofilms in a thermophilic biogas system by high-throughput metagenome sequencing[J] . FEMS Microbiol. Ecol., 2012, 79(3): 785-799
[13]  Tamaki H, Wright C L, Li X, Lin Q, Hwang C, Wang S, Thimmapuram J, Kamagata Y, and Liu W T. Analysis of 16S rRNA amplicon sequencing options on the Roche/454 next-generation titanium sequencing platform[J] . PLoS One, 2011, 6(9): e25263
[14]  Caporaso J G, Kuczynski J, Stombaugh J, Bittinger K, Bushman F D, Costello E K, Fierer N, Pena A G, Goodrich J K, Gordon J I, Huttley G A, Kelley S T, Knights D, Koenig J E, Ley R E, Lozupone C A, McDonald D, Muegge B D, Pirrung M, Reeder J, Sevinsky J R, Turnbaugh P J, Walters W A, Widmann J, Yatsunenko T, Zaneveld J, and Knight R. QIIME allows analysis of high-throughput community sequencing data[J] . Nat. Methods, 2010, 7(5): 335-336
[15]  Li Y, Yan X L, Fan J P, Zhu J H, and Zhou W B. Feasibility of biogas production from anaerobic co-digestion of herbal-extraction residues with swine manure[J] . Bioresour. Technol., 2011, 102(11): 6458-6463
[16]  Gallert C and Winter J. Propionic acid accumulation and degradation during restart of a full-scale anaerobic biowaste digester[J] . Bioresour. Technol., 2008, 99: 170-178
[17]  Hongoh Y, Deevong P, Hattori S, Inoue T, Noda S, Noparatnaraporn N, Kudo T, and Ohkuma M. Phylogenetic diversity, localization, and cell morphologies of members of the candidate phylum TG3 and a subphylum in the phylum Fibrobacteres, recently discovered bacterial groups dominant in termite guts[J] . Appl. Environ. Microbiol., 2006, 72(10): 6780-6788
[18]  McDonald D, Price M N, Goodrich J, Nawrocki E P, DeSantis T Z, Probst A, Andersen G L, Knight R, and Hugenholtz P. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea[J] . ISME J., 2012, 6(3): 610-618
[19]  Ganesan A, Chaussonnerie S, Tarrade A, Dauga C, Bouchez T, Pelletier E, Le Paslier D, and Sghir A. Cloacibacillus evryensis gen. nov., sp. nov., a novel asaccharolytic, mesophilic, amino-acid-degrading bacterium within the phylum‘Synergistetes', isolated from an anaerobic sludge digester[J] . Int. J. Syst. Evol. Microbiol., 2008, 58(Pt 9): 2003-2012
[20]  Looft T, Levine U Y, and Stanton T B. Cloacibacillus porcorum sp. nov., a mucin-degrading bacterium from the swine intestinal tract and emended description of the genus Cloacibacillus[J] . Int. J. Syst. Evol. Microbiol., 2013, 63(Pt 6): 1960-1966
[21]  Ganesan A, Chaussonnerie S, Tarrade A, Dauga C, Bouchez T, Pelletier E, Le Paslier D, and Sghir A. Cloacibacillus evryensis gen. nov., sp. nov., a novel asaccharolytic, mesophilic, amino-acid-degrading bacterium within the phylum 'Synergistetes’, isolated from an anaerobic sludge digester[J] . Int. J. Syst. Evol. Microbiol., 2008, 58(Pt 9): 2003-12
[22]  Muller N, Worm P, Schink B, Stams A J, and Plugge C M. Syntrophic butyrate and propionate oxidation processes: from genomes to reaction mechanisms[J] . Environ. Microbiol. Rep., 2010, 2(4): 489-99
[23]  Li J Z, Ban Q Y, Zhang L G, and Jha A K. Syntrophic Propionate Degradation in Anaerobic Digestion: A Review[J] . Int. J. Agric. Biol., 2012, 14(5): 843-850
[24]  Nelson M C, Morrison M, and Yu Z T. A meta-analysis of the microbial diversity observed in anaerobic digesters[J] . Bioresour. Technol., 2011, 102(4): 3730-3739
[25]  Tan H Q, Li T T, Zhu C, Zhang X Q, Wu M, and Zhu X F. Parabacteroides chartae sp. nov., an obligately anaerobic species from wastewater of a paper mill[J] . Int. J. Syst. Evol. Microbiol., 2012, 62(Pt 11): 2613-7

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133