全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2014 

铪金属-有机骨架材料的孔尺寸调控及其吸附性能

DOI: 10.3969/j.issn.0438-1157.2014.05.020, PP. 1696-1705

Keywords: 金属-有机骨架材料,,孔尺寸调控,稳定性,吸附,二氧化碳捕集

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用三种不同长度的有机配体——反丁烯二酸(H2FUM)、对苯二甲酸(H2BDC)和联苯二甲酸(H2BPDC),合成了一系列具有不同孔尺寸的新型铪(Hf)金属-有机骨架(MOF)材料(Hf-FUM、Hf-BDC和Hf-BPDC),并考察了CO2、N2和CH4三种气体在这些材料中吸附分离行为。研究结果表明,这三种材料具有和UiO-66(Zr)相同的拓扑结构,且具有很好的热稳定性。Hf-FUM和Hf-BDC的结构在水中能够保持稳定,而Hf-BPDC在水中会发生降解。同时,具有最小孔尺寸的Hf-FUM材料对CO2/N2以及CO2/CH4体系具有最好的分离性能。这为以后设计用于CO2分离的新型纳微结构材料提供了参考依据。

References

[1]  Yang Q, Vaesen S, Ragon F, Wiersum A D, Wu D, Lago A, Devic T, Martineau C, Taulelle F, Llewellyn P L, Jobic H, Zhong C, Serre C, Weireld G D, Maurin G. A water stable metal-organic frameworks with optimal features for CO2 capture[J]. Angew. Chem. Ind. Ed., 2013, 52: 10316-10320
[2]  Yang Qingyuan(阳庆元), Liu Dahuan(刘大欢), Zhong Chongli(仲崇立). Computational study of metal-organic frameworks[J]. CIESC Journal (化工学报), 2009, 60(4): 805-819
[3]  Huang H, Zhang W, Liu D, Liu B, Chen G, Zhong C. Effect of temperature on gas adsorption and separation in ZIF-8: a combined experimental and molecular simulation study[J]. Chem. Eng. Sci., 2011, 66: 6297-6305
[4]  Murray L J, Dinca M, Long J R. Hydrogen storage in metal-organic frameworks[J]. Chem. Soc. Rev., 2009, 38: 1294-1314
[5]  Si X, Jiao C, Li F, Zhang J, Wang S, Liu S, Li Z, Sun L, Xu F, Gabelica Z, Schick C. High and selective CO2 uptake, H2 storage and methanol sensing on the amine-decorated 12-connected MOF CAU-1[J]. Energy Environ. Sci., 2011, 4: 4522-4527
[6]  Ma L, Abney C, Lin W. Enantioselective catalysis with homochiral metal-organic frameworks[J]. Chem. Soc. Rev., 2009, 38: 1248-1256
[7]  Cui Y, Yue Y, Qian G, Chen B. Luminescent functional metal-organic frameworks[J]. Chem. Rev., 2012, 112: 1126-1162
[8]  Greathouse J A, Allendorf M D. The interaction of water with MOF-5 simulated by molecular dynamics[J]. J. Am. Chem. Soc., 2006, 128: 10678-10679
[9]  Saha D, Deng S. Structural stability of metal organic framework MOF-177[J]. J. Phys. Chem. Lett., 2010, 1: 73-78
[10]  Jeremias F, Khutia A, Henninger S K, Janiak C. MIL-100(Al, Fe) as water adsorbents for heat transformation purposes—a promising application[J]. J. Mater. Chem., 2012, 22: 10148-10151
[11]  Bon V, Senkovska I, Baburin I A, Kaskel S. Zr- and Hf-based metal-organic frameworks: tracking down the polymorphism[J]. Cryst. Growth Des., 2013, 13: 1231-1237
[12]  Guillerm V, Gross S, Serre C, Devic T, Bauer M, Ferey G. A zirconium methacrylate oxocluster as precursor for the low-temperature synthesis of porous zirconium(Ⅳ) dicarboxylates[J]. Chem. Commun., 2010, 46: 767-769
[13]  Küsgens P, Rose M, Senkovska I, Fr?de H, Henschel A, Siegle S, Kaskel S. Characterization of metal-organic frameworks by water adsorption[J]. Microporous and Mesoporous Materials, 2009, 120: 235-330
[14]  Yazaydin A ?, Snurr R Q, Park T, Koh K, Liu J, LeVan M D, Benin A I, Jakubczak P, Lanuza M, Gallowway D B, Low J J, Willis R R. Screening of metal-organic frameworks for carbon dioxide capture from flue gas using a combined experimental and modeling approach[J]. J. Am. Chem. Soc., 2009, 131: 18198-18199
[15]  Morris W, Leung B, Furukawa H, Yaghi O K, He N, Hayashi H, Houndonougbo Y, Asta M, Laird B B, Yaghi O M. A combined experimental-computational investigation of carbon dioxide capture in a series of isoreticular zeolitic imidazolate frameworks[J]. J. Am. Chem. Soc., 2010, 132: 11006-11008
[16]  Banerjee R, Furukawa H, Britt D, Knobler C, O'Keeffe M, Yaghi O M. Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties[J]. J. Am. Chem. Soc., 2009, 131: 3875-3877
[17]  Munusamy K, Sethia G, Patil D V, Rallapalli P B S, Somani R S. Sorption of carbon dioxide, methane, nitrogen and carbon monoxide on MIL-101(Cr): volumetric measurements and dynamic adsorption studies[J]. Chemical Engineering Journal, 2012, 195: 359-368
[18]  Kim S, Kim J, Kim H, Cho H, Ahn W. Adsorption/catalytic properties of MIL-125 and NH2-MIL-125[J]. Catalysis Today, 2013, 204: 85-93
[19]  Yang Q, Guillerm V, Ragon F, Wiersum A D, Llewellyn P L, Zhong C, Devic T, Serre C, Maurin G. CH4 storage and CO2 capture in highly porous zirconium oxide based metal-organic frameworks[J]. Chem. Commun., 2012, 48: 9831-9833
[20]  Ribeiro R P, Sauer T P, Lopes F V, Moreira R F, Grande C A, Rodrigues A E. Adsorption of CO2, CH4, and N2 in activated carbon honeycomb monolith[J]. J. Chem. Eng. Data, 2008, 53: 2311-2317
[21]  Sumida K, Rogow D L, Mason J A, McDonald T M, Bloch E D, Herm Z R, Bae T, Long J R. Carbon dioxide capture in metal-organic frameworks[J]. Chem. Rev., 2012, 112(2): 724-781
[22]  Kong Xiangming(孔祥明), Yang Ying(杨颖), Shen Wenlong(沈文龙), Li Ping(李平), Yu Jianguo(于建国). Adsorption equilibrium of CO2, CH4 and N2 on zeolite 13X-APG[J]. CIESC Journal (化工学报), 2013, 64(6): 2117-2124
[23]  Wu D, Yang Q, Zhong C, Liu D, Huang H, Zhang W, Maurin G. Revealing the structure-property relationships of metal-organic frameworks for CO2 capture from flue gas[J]. Langmuir, 2012, 28(33): 12094-12099
[24]  Yan Q, Lin Y, Kong C, Chen L. Remarkable CO2/CH4 selectivity and CO2 adsorption capacity exhibited by polyamine-decorated metal-organic framework adsorbents[J]. Chem. Commun., 2013, 49: 6873-6875
[25]  Bae Y, Snurr R Q. Development and evaluation of porous materials for carbon dioxide separation and capture[J]. Angew. Chem. Int. Ed., 2011, 50: 11586-11596
[26]  Stavitski E, Pidko E A, Couck S, Remy T, Hensen E J M, Weckhuysen B M, Denayer J, Gascon J, Kapteijn F. Complexity behind CO2 capture on NH2-MIL-53(Al) [J]. Langmuir, 2011, 27: 3970-3976
[27]  DeCoste J B, Peterson G W, Schindler B J, Killops K L, Browe M A, Mahle J J. The effect of water adsorption on the structure of the carboxylate containing metal-organic frameworks Cu-BTC, Mg-MOF-74, and UiO-66[J]. J. Mater. Chem. A, 2013, 1: 11922-11932
[28]  Park K S, Ni Z, Cote A P, Choi J Y, Huang R, Uribe-Romo F J, Chae H K, O'Keeffe M, Yaghi O M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks[J]. PNAS, 2006, 103(27): 10186-10191
[29]  Low J J, Benin A I, Jakubczak P, Abrahamian J F, Faheem S A, Willis R R. Virtual high throughput screening confirmed experimentally: porous coordination polymer hydration[J]. J. Am. Chem. Soc., 2009, 131: 15834-15842
[30]  Horcajada P, Surble S, Serre C, Hong D, Seo Y, Chang J, Greneche J, Margiolaki I, Ferey G. Synthesis and catalytic properties of MIL-100(Fe), an iron(Ⅲ) carboxylate with large pores[J]. Chem. Commun., 2007(27): 2820-2822
[31]  Volkringer C, Popov D, Loiseau T, Férey G, Burghammer M, Riekel C, Haouas M, Taulelle F. Synthesis, single-crystal X-ray microdiffraction, and NMR characterizations of the giant pore metal-organic framework aluminum trimesate MIL-100[J]. Chem. Mater., 2009, 21: 5695-5697
[32]  Millange F, Serre C, Férey G. Synthesis, structure determination and properties of MIL-53as and MIL-53ht: the first CrⅢ hybrid inorganic-organic microporous solids: CrⅢ(OH)·{O2C-C6H4-CO2} {HO2C-C6H4-CO2H}x[J]. Chem. Commun., 2002: 822-823
[33]  Kang I J, Khan N A, Haque E, Jhung S H. Chemical and thermal stability of isotypic metal-organic frameworks: effect of metal ions[J]. Chem. Eur. J., 2011, 17: 6437-6442
[34]  Cavka J H, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud K P. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability[J]. J. Am. Chem. Soc., 2008, 130: 13850-13851
[35]  Feng D, Jiang H, Chen Y, Gu Z, Wei Z, Zhou H. Metal-organic frameworks based on previously unknown Zr8/Hf8 cubic clusters[J]. Inorg. Chem., 2013, 52: 12661-12667
[36]  Jakobsen S, Gianolio D, Wragg D S, Nilsen M H, Emerich H, Bordiga S, Lamberti C, Olsbye U, Tilset M, Lillerud K P. Structural determination of a highly stable metal-organic framework with possible application to interim radioactive waste scavenging: Hf-UiO-66[J]. Physical Review B, 2012, 86: 125429-125440
[37]  Kim M, Cahill J F, Fei H, Prather K A, Cohen S M. Postsynthetic ligand and cation exchange in robust metal-organic frameworks[J]. J. Am. Chem. Soc., 2012, 134: 18082-18088
[38]  Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O'Keeffe M, Yaghi O M. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage[J]. Science, 2002, 295: 469-472
[39]  Deng H, Grunder S, Cordova K E, Valente C, Furukawa H, Hmadeh M, Gandara F, Whalley A C, Liu Z, Asahina S, Kazumori H, O'Keeffe M, Terasaki O, Stoddart J F, Yaghi O M. Large-pore apertures in a series of metal-organic frameworks[J]. Science, 2012, 336: 1018-1023
[40]  Cordero B, Gómez V, Platero-Prats A E, Revés M, Echeverría J, Cremades E, Barragán F, Alvarez S. Covalent radii revisited[J]. Dalton. Trans., 2008(21): 2832-2839
[41]  Wiβmann G, Schaate A, Lilienthal S, Bremer I, Schneider A M. Modulated synthesis of Zr-fumarate MOF[J]. Microporous and Mesoporous Materials, 2012, 152: 64-70
[42]  Zhang W, Huang H, Zhong C, Liu D. Cooperative effect of temperature and linker functionality on CO2 capture from industrial gas mixtures in metal-organic frameworks: a combined experimental and molecular simulation study[J]. Phys. Chem. Chem. Phys., 2012, 14: 2317-2325
[43]  Schaate A, Roy P, Godt A, Lippke J, Waltz F, Wiebcke M, Behrens P. Modulated synthesis of Zr-based metal-organic frameworks: from nano to single crystals[J]. Chem. Eur. J., 2011, 17: 6643-6651
[44]  Decoste J B, Peterson G W, Jasuja H, Glover T G, Huang Y, Walton K S. Stability and degradation mechanisms of metal-organic frameworks containing the Zr6O4(OH)4 secondary building unit[J]. J. Mater. Chem. A, 2013, 1: 5642-5650
[45]  Tsuruoka T, Furukawa S, Takashima Y, Yoshida K, Isoda S, Kitagawa S. Nanoporous nanorods fabricated by coordination modulation and oriented attachment growth[J]. Angew. Chem. Int. Ed., 2009, 48: 4739-4743
[46]  Zhang Z, Li Z, Li J. Computational study of adsorption and separation of CO2, CH4, and N2 by an rht-type metal-organic framework[J]. Langmuir, 2012, 28: 12122-12133
[47]  Yang Q, Zhong C, Chen J. Computational study of CO2 storage in metal-organic frameworks[J]. J. Phys. Chem. C, 2008, 112: 1562- 1596
[48]  Wang B, C?té A P, O'Keeffe M, Yaghi O M. Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs[J]. Nature, 2008, 453: 207-202
[49]  An J, Geib S J, Rosi N L. High and selective CO2 uptake in a cobalt adeninate metal-organic framework exhibiting pyrimidine- and amino-decorated pores[J]. J. Am. Chem. Soc., 2010, 132: 38-39
[50]  Chen Z, Xiang S, Arman H, Li P, Zhao D, Chen B. Significantly enhanced CO2/CH4 separation selectivity within a 3D prototype metal-organic framework functionalized with OH groups on pore surfaces at room temperature[J]. Eur. J. Inorg. Chem., 2011(14): 2227-2231
[51]  Cho H, Yang D, Kim J, Jeong S, Ahn W. CO2 adsorption and catalytic application of Co-MOF-74 synthesized by microwave heating[J]. Catalysis Today, 2012, 185: 35-40

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133