全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2014 

SrFe0.6Cu0.3Ti0.1O3-δ透氧膜反应器中甲烷部分氧化反应工艺及膜稳定性考察

DOI: 10.3969/j.issn.0438-1157.2014.05.015, PP. 1660-1666

Keywords: 甲烷,合成气,透氧,混合导体,钙钛矿,稳定性

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用SrFe0.6Cu0.3Ti0.1O3-δ混合导体透氧膜组装成膜催化反应器,进行甲烷部分氧化制合成气反应,考察了反应温度、空速、催化剂粒径等条件的影响,并分析了反应气氛引起的透氧膜结构变化情况。结果表明,在膜反应器内,催化反应与透氧过程存在相互制约和相互促进的关系。在膜反应器内进行甲烷部分氧化反应后,透氧膜的两侧表面均发生蚀刻现象,结晶度显著降低,反应侧蚀刻现象较为严重,膜表面形成了疏松的多孔层,反应气氛使膜表面晶体结构发生了较大改变,Sr容易从钙钛矿结构中析出并与CO2结合形成SrCO3,Sr的析出导致组成不平衡,促进了钙钛矿结构分解及其他物相的产生。

References

[1]  Teraoka Y, Zhang H M, Furukawa S, Yamazoe N. Oxygen permeation through perovskite-type oxides[J]. Chemistry Letters, 1985, 9: 1743-1746
[2]  Bouwmeester H J M. Dense ceramic membranes for methane conversion. Catalysis Today, 2003, 82(1-4): 141-150
[3]  Ishihara T, Takaaki S, Honda M, Nishiguchi H, Takita Y. Intermediate temperature solid oxide fule cell using LaGaO3 electrolyte[J]. Journal of the Electrochemical Society, 2000, 147(4): 1332-1337
[4]  Tsuruta Y, Todaka T, Nisiguchi H, Ishiharaz T, Takita Y. Mixed electronic-oxide ionic conductor of Fe-doped La(Sr)GaO3 Perovskite oxide for oxygen permeating membrane[J]. Electrochemical and Solid State Letters, 2001, 4(3): 13-15
[5]  Cheng Xu(程序), Cui Zongjun(崔宗均), Zhu Wanbin(朱万斌). A discussion on the exploitation of biogas: Another kind of unconventional natural gas resources[J]. Natural Gas Industry (China) (天然气工业), 2013,33(1):137-144
[6]  Liu Chang(刘畅), Lu Xiaohua(陆小华). Carbon reduction pattern in China: comparison of CCS and biomethane route[J]. Journal of Chemical Industry and Engineering(China) (化工学报), 2013,64(1):7-10
[7]  Choudhary T V, Choudhary V R. Energy-Efficient Syngas production through catalytic oxy-methane reforming reactions[J]. Angewandte Chemie, International Edition, 2008, 47(10):1828-1847
[8]  Hickman D A, Schmidt L D. Production of syngas by direct catalytic oxidation of methane[J]. Science, 1993, 259(5093): 343-346
[9]  Bharadwaj S S, Schmidt L D. Catalytic partial oxidation of natural gas to syngas[J]. Fuel Processing Technology, 1995, 42(2-3): 109-127
[10]  Pena M A, Gomez J P, Fierro J L G. New catalytic routes for syngas and hydrogen production[J]. Applied Catalysis A: General, 1996, 144(1-2): 7-57
[11]  Wu Zhentao(吴振涛), Zhang Chun(张春), Chang Xianfeng(常先锋), Jin Wanqin(金万勤), Xu Nanping(徐南平). Properties of novel Al2O3-doped SrCo0.8Fe0.2O3-δ mixed conducting oxides[J]. Journal of Chemical Industry and Engineering(China) (化工学报), 2006, 57(8):1979-1985
[12]  Hashim S M, Mohamed A R, Bhatia S. Current status of ceramic-based membranes for oxygen separation from air. Advances in Colloid and Interface Science, 2010, 160:88-100
[13]  Sunarso J, Baumann S, Serra J M, Meulenberg W A, Liu S, Lin Y S, Diniz da Costa J C. Mixed ionic-electronic conducting (MIEC) ceramic-based membranes for oxygen separation. Journal of Membrane Science, 2008, 320:13-41
[14]  Zhu Xuefeng(朱雪峰), Yang Weishen(杨维慎). Mixed conductor oxygen permeable membrane reactors[J]. Chinese Journal of Catalysis(China) (催化学报), 2009, 30(8): 801-816
[15]  Gallucci F, Fernandez E, Corengia P, Annaland M S. Recent advances on membranes and membrane reactors for hydrogen production. Chemical Engineering Science, 2013, 92(5):40-66
[16]  Geffroy P M, Fouletier J, Richet N, Chartier T. Rational selection of MIEC materials in energy production processes. Chemical Engineering Science, 2013, 87:408-433
[17]  Wei Y, Yang W, Caro J, Wang H. Dense ceramic oxygen permeable membranes and catalytic membrane reactors. Chemical Engineering Journal, 2013, 220:185-203
[18]  Pei S, Kleefisch M S, Kobylinski T P, Faber J, Udovich C A, Zhang-McCoy V, Dabrowski B, Balachandran U, Mieville R L, Poeppel R B. Failure mechanisms of ceramic membrane reactors in partial oxidation of methane to synthesis gas[J]. Catalysis Letters, 1995. 30(1-4): 201-212
[19]  Shao Z P, Xiong G X, Tong J H, Dong H, Yang W S. Ba effect in doped Sr(Co0.8Fe0.2)O3-δ on the phase structure and oxygen permeation properties of the dense ceramic membranes[J]. Separation and Purification Technology, 2001, 25: 419-429
[20]  Shao Z P, Yang W S, Cong Y, Dong H, Tong J H, Xiong G X. Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3-δ oxygen membrane[J]. Journal of Membrane Science, 2000, 172(1-2): 177-188
[21]  Dong H, Shao Z P, Xiong G X, Tong J H, Sheng S S, Yang W S. Investigation on POM reaction in a new perovskite membrane reactor[J]. Catalysis Today, 2001, 67: 3-13
[22]  Tong J H, Yang W S, Cai R, Zhu B C, Lin L W. Novel and ideal zirconium-based dense membrane reactors for partial oxidation of methane to syngas[J]. Catalysis Letters, 2002, 78(1-4): 129-137
[23]  Tong J H, Yang W S, Zhu B C, Cai R. Investigation of ideal zirconium- doped perovskite-type ceramic membrane materials for oxygen separation[J]. Journal of Membrane Science, 2002, 203(1-2): 175-189
[24]  Balachandran U, Dusek J T, Mileville R L, Poeppel R B, Kleefisch M S, Pei S, Kobylinski T P, Udovich C A, Bose A C. Dense ceramic membranes for partial oxidation of methane to syngas[J]. Applied Catalysis A: General, 1995, 133(1): 19-29
[25]  Balachandran U, Dusek J T, Maiya P S, Ma B, Mieville R L, Kleefisch M S, Udovich C A. Ceramic membrane reactor for converting membrane to syngas[J]. Catalysis Today, 1997, 36: 265-272
[26]  Wang H H, Tablet C, Feldhoff A, Caro J. A cobalt- free oxygen- permeable membrane based on the perovskite- type oxide Ba0.5Sr0.5Zn0.2Fe0.8O3-δ[J]. Advanced Materials, 2005, 17(14): 1785-1788
[27]  Zhu X F, Wang H H, Yang W S. Structural stability and oxygen permeability of cerium lightly doped BaFeO3-δ ceramic membranes[J]. Solid State Ionics, 2006, 177(33-34): 2917-2921
[28]  Teraoka Y, Shimokawa H, Kang Ch Y, Kusaba H, Sasaki K. Fe-based perovskite-type oxides as excellent oxygen-permeableband reduction-tolerant materials[J]. Solid State Ionics, 2006, 177(26-32):2245-2248
[29]  Zhang H, Wang T T, Dong X F, Lin W M. Preparation and oxygen permeation properties of SrFe(Cu)O3-δ dense ceramic membranes[J]. Journal of Natural Gas Chemistry, 2009, 18(1):45-49
[30]  Zhang Heng(张恒), Wang Tingting(王婷婷), Lin Weiming(林维明). Stability of SrFe0.6Cu0.3Ti0.1O3-δ mixed conducting membrane material[J]. Chinese Journal of Applied Chemistry(China) (应用化学), 2009, 26(11):1328-1331
[31]  Efimov K, Halfer T, Kuhn A, Heitjans P, Caro J, Feldhoff A. Novel cobalt-free oxygen-permeable perovskite-type membrane[J]. Chemistry of Materials, 2010, 22(4):1540-1544
[32]  Qi Xinbing(齐心冰), Dong Xinfa(董新法), Lin Weiming(林维明). Steam reforming and partial oxidation of methane to produce syngas[J], Natural Gas Industry (China) (天然气工业), 2005, 25(6):125-127
[33]  Hu J, Xing T L, Jia Q C, Hao H S, Yang D L, Guo Y Q, Hu X. Methane partial oxidation to syngas in YBa2Cu3O7-x membrane reactor. Applied Catalysis A: General, 2006, 306: 29-33
[34]  Tsai C, Dixon A G, Ma Y H, Moser W R, Pascucci M. Dense perovskite membrane reactors for partial oxidation of methane to syngas. Journal of the American Ceramic Society, 1998, 81:1437-1444

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133