全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2014 

浆氢在水平圆管内流动的数值模拟

DOI: 10.3969/j.issn.0438-1157.2014.z2.006, PP. 38-44

Keywords: 浆氢,两相流,数值模拟,欧拉模型,体积分数分布

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用三维欧拉-欧拉模型对浆氢在水平圆管中的流动特性进行了数值模拟研究,通过数值计算确定了合适的颗粒-颗粒碰撞恢复系数、颗粒-壁面碰撞系数等相关参数,并将数值模拟的压降结果与文献中实验数据进行了对比。利用两相模型对固相体积分数分别为10%、20%、30%,流速分别为1m·s-1、2m·s-1、3m·s-1,管道直径分别为10mm、16.6mm、23mm下的浆氢流动特性进行了模拟,得到了浆氢的固相体积分数在管道截面上的分布,发现在较低流速、较低固相平均体积分数和较大管道直径的情况下固相颗粒的体积分数分布不均匀性更大。

References

[1]  Launder B E, Spalding D B. Lectures in Mathematical Models of Turbulence[M]. London: Academic Press, 1972
[2]  Ogawa S, Umemura A, Oshima N. On the equations of fully fluidized granular materials[J]. Zeitschrift für Angewandte Mathematik und Physik (ZAMP), 1980, 31(4): 483-493
[3]  Johnson P C, Jackson R. Frictional-collisional constitutive relations for granular materials with application to plane shearing[J]. Journal of Fluid Mechanics, 1987, 176: 67-93
[4]  Hill K B, Shook C A. Pipeline transport of coarse particles by water and by fluids with yield stresses[J]. Particulate Science and Technology: An International Journal, 1998, 16: 163-183
[5]  Kaushal D R, Tomita Y. Experimental investigation for near-wall lift of coarser particles in slurry pipeline using g-ray densitometer[J]. Powder Technology, 2007, 172(3):177-187
[6]  Carney R R.Slush hydrogen production and handling as a fuel for space projects[J].Advances in Cryogenic Engineering, 1964, 6: 529-536
[7]  Sindt C F. A summary of the characterization study of slush hydrogen[J]. Cryogenics, 1970, 10: 372-380
[8]  Ekambara K, Sanders R S, Nandakumar K, et al. Hydrodynamic simulation of horizontal slurry pipeline flow using ANSYS-CFX[J]. Industrial & Engineering Chemistry Research, 2009, 48: 8259-8171
[9]  Eesa M, Barigou M. CFD investigation of the pipe transport of corse solids in laminar power law fluids[J]. Chemical Engineering Science, 2009, 64: 322-333
[10]  Kong L, Zhang C. Evaluation of the effect of wall boundary conditions on numerical simulation of circulating fluidized beds[J]. Particuology, 2014, 13: 114-123
[11]  Nijdam J J,Langrish T A G, Fletcher D F. Assessment of an Eulerian CFD model for prediction of dilute droplet dispersion in a turbulent jet[J]. Applied Mathematical Modeling, 2008, 32: 2686-2705
[12]  Kaushal D R, Thinglas T, Tomita Y, Kuchii S, Tsukamoto H. CFD modeling for pipeline flow of fine particles at high concentration[J]. International Journal of Multiphase Flow, 2012, 43: 85-100
[13]  Zhou X Y, Gao J S, Xu C M, Lan X Y. Effect of wall boundary condition on CFD simulation of CFB risers[J]. Particuology, 2013, 11: 556-565
[14]  Gidaspow D. Multiphase Flow and Fluidization[M]. Boston, MA: Academic Press, 1994
[15]  Gidaspow D, Bezburuah D, Ding J. Hydrodynamics of circulating fluidized beds: kinetic theory approach//7th Engineering Foundation Conference on Fluidization[C]. Gold Coast, Australia, 1992: 75-82
[16]  Lun C K K, Savage S B, Jeffrey D J, Chepurniy N. Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flow field[J]. Journal of Fluid Mechanics, 1984, 140: 223-256
[17]  Hinze J O. Turbulence[M]. New York: McGraw-Hill Publishing Co., 1975
[18]  Ding J, Gidaspow D. A bubbling fluidization model using kinetic theory of granular flow[J]. AIChE J., 1990, 36(4): 523-538

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133