全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2015 

基于(火积)耗散热阻的换热器网络优化

DOI: 10.11949/j.issn.0438-1157.20150281, PP. 272-276

Keywords: 换热器网络,优化,,耗散热阻,变频水系统,运行参数

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于(火积)耗散热阻的概念,分析了换热器网络中的传热过程,并结合变频泵的性能分析和管网的阻力分析,建立了换热器网络中结构参数、运行参数和用户需求之间的直接联系,完善了换热器网络优化的数学模型。在此基础上,构建了基于(火积)耗散热阻换热器网络优化的方法。最后以一个典型的有变频水系统的换热器网络为例,阐释了基于(火积)耗散热阻的换热器网络优化方法。研究结果表明,在给定换热器网络中各换热器热导的情况下,通过优化计算可以获得使换热器网络中总泵能耗最小的运行参数。在变工况运行的情况下,随着换热器网络换热量的增大,各变频泵的运行参数出现不同程度的增大,增大的速度与工质的性质和管网的阻力特性等因素有关。

References

[1]  Papoulias S A, Grossmann I E. A structural optimization approach in process synthesis (2): Heat-recovery networks [J]. Comput. Chem. Eng., 1983, 7: 707-721.
[2]  Bjork K M, Nordman R. Solving large-scale retrofit heat exchanger network synthesis problems with mathematical optimization methods [J]. Chem. Eng. Process, 2005, 44: 869-876.
[3]  Yee T F, Grossmann I E, Kravanja Z. Simultaneous optimization models for heat integration (1): Area and energy targeting and modeling of multi-stream exchangers [J]. Comput. Chem. Eng., 1990, 14: 1151-1164.
[4]  Dolan W B, Cummings P T, Levan M D. Algorithmic efficiency of simulated annealing for heat-exchanger network design [J]. Comput. Chem. Eng., 1990, 14: 1039-1050.
[5]  Lewin D R, Wang H, Shalev O. A generalized method for HEN synthesis using stochastic optimization(I): General framework and MER optimal synthesis [J]. Comput. Chem. Eng., 1998, 22: 1503- 1513.
[6]  Lewin D R. A generalized method for HEN synthesis using stochastic optimization(II): The synthesis of cost-optimal networks [J]. Comput. Chem. Eng., 1998, 22: 1387-1405.
[7]  Fesanghary M, Mahdavi M, Minary-Jolandan M, Alizadeh Y. Hybridizing harmony search algorithm with sequential quadratic programming for engineering optimization problems [J]. Comput. Method Appl. M, 2008, 197: 3080-3091.
[8]  Dolan W B, Cummings P T, Levan M D. Process optimization via simulated annealing — application to network design [J]. AIChE J., 1989, 35: 725-736.
[9]  Lin B, Miller D C. Solving heat exchanger network synthesis problems with Tabu Search [J]. Comput. Chem. Eng., 2004, 28: 1451-1464.
[10]  Xu Y C, Chen Q. An entransy dissipation—based method for global optimization of district heating networks [J]. Energ. Buildings, 2012, 48: 50-60.
[11]  Chen Q, Xu Y C. An entransy dissipation—based optimization principle for building central chilled water systems [J]. Energy, 2012, 37: 571-579.
[12]  Chen Q. Entransy dissipation—based thermal resistance method for heat exchanger performance design and optimization [J]. Int. J. Heat Mass Tran., 2013, 60: 156-162.
[13]  Xu Y C, Chen Q. Minimization of mass for heat exchanger networks in spacecrafts based on the entransy dissipation theory [J]. Int. J. Heat Mass Tran., 2012, 55: 5148-5156.
[14]  Yang Z Y, Borsting H. Energy efficient control of a boosting system with multiple variable-speed pumps in parallel //IEEE Decis. Contr. P[C]. 2010: 2198-2203.
[15]  Yang Z Y, Borsting H. Optimal scheduling and control of a multi-pump boosting system//IEEE Intl. Conf. Contr. [C]. 2010: 2071-2076.
[16]  Rishel J B. HVAC Pump Handbook[M]. New York: McGraw-Hill, 1996.
[17]  White F M. Fluid Mechanics[M]. 4th ed. Boston, Mass.: WCB/McGraw-Hill, 1999.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133