全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2015 

铁基氧化物微颗粒的光谱辐射特性

DOI: 10.11949/j.issn.0438-1157.20150282, PP. 308-313

Keywords: 辐射物性,实验测量,金属氧化物,光谱,太阳能制氢

Full-Text   Cite this paper   Add to My Lib

Abstract:

太阳能热化学制氢过程中金属氧化物颗粒物性随反应温度、波长以及组分发生改变且其对反应过程的能量传递起着重要的作用。为了获得金属氧化物的光谱辐射特性,搭建了光谱透反射测量系统。首先,通过一系列实验测量校核了该系统测量结果的精确性以及稳定性。其次,研究了含有NiFe2O4金属氧化物颗粒的溴化钾压片在光谱区间0.3~1.2mm的透过率。结果表明:该系统具有良好的测试精度;NiFe2O4压片的透过率随波长的增大而增大,随厚度的增大而减小;在部分光谱处均存在透过率振荡现象,意味着颗粒在该波段区间存在吸收效果。上述研究为太阳能热化学制氢过程中的反应颗粒的辐射特性的反演提供了实验基础,同时也为太阳能反应器内传热、传质模型的建立提供了理论基础。

References

[1]  Palumbo R, Keunecke M, M?ller S, Steinfeld A. Reflections on the design of solar thermal chemical reactors: thoughts in transformation [J]. Energy, 2004, 29: 727-744.
[2]  Schunk L O, Haeberling P, Wept S, Wuillemin D, Meier A, Steinfeld A. A receiver-reactor for the solar thermal dissociation of zinc oxide [J]. Journal of Solar Energy Engineering, 2008, 130(021009): 1-6.
[3]  Villafán-Vidales H I, Abanades S, Arancibia-Bulnes C A, Riveros-RosasD, Romero-Paredes H, Espinosa-ParedesG, EstradaetC A. Radiative heat transfer analysis of a directly irradiated cavity-type solar thermochemical reactor by Monte Carlo ray-tracing [J]. Journal of Renewable and Sustainable Energy, 2012, 4(043125): 1-16.
[4]  Steinfeld A, Kuhn P, Reller A, Palumbo R, Murray J, Tamaura Y. Solar-processed metals as clean energy carriers and water-splitters [J]. International Journal of Hydrogen Energy, 1998, 23(3): 185-190.
[5]  Funk E J. Thermochemical hydrogen production:past and present [J]. International Journal of Hydrgen Energy, 2001, 26(3): 185-190.
[6]  Qu Jianlin(曲健林), Han Min(韩敏), Zhang Xiuli(张秀丽), Xu Xiufeng(徐秀峰), Guo Qingjie(郭庆杰). Hydrogen generation by sodium borohydride hydrolysis on Co-B catalysts supported on cotton stalk-based activated carbon [J]. CIESC Journal (化工学报), 2015, 66(1): 92-98.
[7]  Stephane A, Charvin P, Flamant G, Neveu P. Screening of water-splitting thermochemical cycles potentially attractive for hydrogen production by concentrated [J]. Energy, 2006, 31(14): 2805-2822.
[8]  Müller R, Lipinski W, Steinfeld A. Transient heat transfer in a directly-irradiated solar chemical reactor for the thermal dissociation of ZnO [J]. Applied Thermal Engineering, 2008, 28: 524-531.
[9]  Koepf E E, Advani S G, Steinfeld A, Prasad A K. A novel beam-down, gravity-fed, solar thermochemical receiver reactor for direct solid particle decomposition:design, modeling and experimentation [J]. International Journal of Hydrogen Energy, 2012, 37: 16871-16887.
[10]  Lopes R, Moura L M, Baillis D, Sacadura J F. Directional spectral emittance of a packed bed: correlation between theoretical prediction and experimental data [J]. ASME Journal of Heat Transfer, 2001, 123: 240-248.
[11]  Ozer N. Optical properties and electrochromic characterization of sol-gel deposited ceria films [J]. Solar Energy Materials and Solar Cells, 2001, 68: 391-400.
[12]  Sadooghi P. Transient coupled radiative and conductive heat transfer in a semitransparent layer of ceramic [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2005, 92: 403-416.
[13]  Osinga T, Lipinski W, Guillot E, Olalde G, Steinfeld A. Experimental determination of the extinction coefficient for a packed-bed particulate medium [J]. Experimental Heat Transfer, 2006, 19: 69-79.
[14]  Li Qiang(李强), Liu Zhengtang(刘正堂), Feng Liping(冯丽萍), Song Wenyan(宋文燕), Zhang Xinggang(张兴刚), Yan Feng(闫锋). Investigation of improving strength and transmission for sapphire [J]. Materials Science & Technology, 2007, 51(1): 52-54.
[15]  Ruan L M, Qi H, An W, Tan H P. Inverse radiation problem for determination of optical constant of fly-ash particles [J]. International Journal of Thermophysics, 2007, 28(4): 1322-134.
[16]  Coray P, Lipinski W, Steinfeld A. Experimental and numerical determination of thermal radiative properties of ZnO particulate media [J]. Journal of Heat Transfer, 2009, 132(012701): 1-6.
[17]  Liang Z, Chueh W C, Ganesan K, Haile S M, Lipinski W. Experimental determination of transmittance of porous cerium dioxide media in the spectral range of 300—1100 mm. Experimental Heat Transfer, 2011, 24(4): 285-299.
[18]  Ganesan K, Lipinski W. Experimental determination of spectral transmittance of porous cerium dioxide in the range 900~1700 mm [J]. Journal of Heat Transfer, 2011, 133(104501): 1-6.
[19]  Zhang Shunde(张顺德), Xia Xinlin(夏新林), Dai Guilong(戴贵龙), Yu Mingxing(于明星), Yan Weixu(闫维旭). Experimental investigation on spectral thermal radiation properties of optical quartz at high temperature [J]. Journal of Engineering thermophysics, 2012, 33(6): 1032-1034.
[20]  Marti J, Resle M, Steinfeld A. Experimental determination of the radiative properties of particle suspensions for high-temperature solar receiver applications [J]. Heat Transfer Engineering, 2014, 35(3): 272-280.
[21]  Marti J, Roesle M, Steinfeld A. Combined experimental-numerical approach to determine radiation properties of particle suspensions [J]. Journal of Heat Transfer, 2014, 136(9): 1-7.
[22]  Wheeler V M, Randrianaliso J, Tamma K, Linpinski W. Spectral radiative properties of three-dimensionally ordered macroporous ceria particles [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2014, 143: 63-72.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133