全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2015 

有内热源的多孔层中自然对流的稳定性分析

DOI: 10.11949/j.issn.0438-1157.20150291, PP. 146-153

Keywords: 局部非热平衡,内热源,浓度梯度,多孔介质,自然对流,稳定性

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用局部非热平衡模型,通过数值法和Garlerkin近似法,分析存在均匀内热源和边界浓度梯度时,有效热导率比、流体和固相间的传热系数、浓度梯度的大小以及内热源在流体与固相内的分布情况对水平多孔层中临界内热源Rayleigh数的影响,来研究相关参数对自然对流的稳定性的影响,并得到临界内热源Rayleigh数的表达式。结果表明,浓度Rayleigh数的增加可以促进自然对流的形成;内热源为正时,自然对流的形成区域主要位于上半区域;内热源为负时,自然对流的形成区域位于下半区域,内热源总是促进自然对流的发生;有效热导率比、流体和固相间的内部传热系数、内热源在流体与固相内的分布情况相互耦合,影响自然对流的稳定性,这种影响取决于各参数的范围。

References

[1]  Vafai Kambiz. Handbook of Porous Media [M]. London:CRC Press, 2010.
[2]  Nield D A, Bejan A . Convection in Porous Media[M]. 4th ed. New York:Springer-Verlag, 2013.
[3]  Liu Wei(刘伟), Fan Aiwu(范爱武), Huang Xiaoming(黄晓明). The Theory and Application of Heat and Mass Transfer in Porous Media (多孔介质传热传质理论与应用)[M]. Beijing: Science Press, 2006.
[4]  Quintard M. Modeling local non-equilibrium heat transfer in porous media//Proc. 11th Int. Heat Transfer Conf. [C]. 1998.
[5]  Alazmi B, Vafai K. Constant wall heat flux boundary conditions in porous media under local thermal non-equilibrium conditions [J]. Int. J. Heat Mass Transfer, 2002, 45: 3071-3087.
[6]  Saravanan S, Senthil Nayaki V P M. Thermorheological effect on thermal nonequilibrium porous convection with heat generation [J]. International Journal of Engineering Science, 2014, 74: 55-64.
[7]  Al-Amiri C A M. Natural convection in porous enclosures: the application of the two-energy equation model [J]. Numerical Heat Transfer, Part A, 2002, 41(8): 817-834.
[8]  Shivakumara I S, Mamatha A L, Ravisha M. Boundary and thermal non-equilibrium effects on the onset of Darcy-Brinkman convection in a porous layer [J]. Journal of Engineering Mathematics, 2010, 67(4): 317-328.
[9]  Nouri-Borujerdi A, Noghrehabadi A R, Rees D A S. Onset of convection in a horizontal porous channel with uniform heat generation using a thermal nonequilibrium model [J]. Transport in Porous Media, 2007, 69(3): 343-357.
[10]  Shivakumara I S, Mamatha A L, Ravisha M. Effects of variable viscosity and density maximum on the onset of Darcy-Bénard convection using a thermal nonequilibrium model [J]. Journal of Porous Media, 2010, 13(7): 613-622.
[11]  Nield D A, Kuznetsov A V. The effect of local thermal nonequilibrium on the onset of convection in a nanofluid [J]. Journal of Heat Transfer, 2010, 132(5): 052405.
[12]  Saravanan S, Jegajothi R. Stationary fingering instability in a non-equilibrium porous medium with coupled molecular diffusion [J]. Transport in Porous Media, 2010, 84(3): 755-771.
[13]  Gao D, Chen Z, Chen L. A thermal lattice Boltzmann model for natural convection in porous media under local thermal non-equilibrium conditions [J]. International Journal of Heat and Mass Transfer, 2014, 70: 979-989.
[14]  Li Juxiang(李菊香), Tu Shandong(涂善东). Heat transfer of laminar flow over a plate embedded in porous medium with a constant heat flux under local non-equilibrium condition [J]. CIESC Journal(化工学报), 2010, 61(1): 10-14.
[15]  Zhao C Y, Lu T J, Hodson H P. Natural convection in metal foams with open cells [J]. Int. J. Heat Mass Transfer, 2005, 48 :2452-2463.
[16]  Saravanan S. Thermal non-equilibrium porous convection with heat generation and density maximum [J]. Transport in Porous Media, 2009, 76(1): 35-43.
[17]  Postelnicu Adrian. The onset of a Darcy-Brinkman convection using a thermal nonequilibrium model(Ⅱ)[J]. International Journal of Thermal Sciences, 2008, 47: 1587-1594.
[18]  Wu Feng(吴峰), Wang Gang(王刚), Ma Xiaoxun(马晓迅). Numerical simulation of natural convection in a porous enclosure with double sinusoidal heating boundary conditions [J]. CIESC Journal(化工学报), 2013, 64(4): 1217-1225.
[19]  Haddad O M, Al-Nimr M A, Al-Khateeb A N. Validation of the local thermal equilibrium assumption in natural convection from a vertical plate embedded in porous medium: non-Darcian model [J]. Int. J. Heat Mass Transfer, 2004, 47: 2037-2042.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133