全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2014 

氮/磷缺乏对污泥沉降性能及丝状菌生长的影响

DOI: 10.3969/j.issn.0438-1157.2014.03.038, PP. 1040-1048

Keywords: 需氧,营养元素,氮磷缺乏,污泥膨胀,丝状菌,沉降,分子生物学

Full-Text   Cite this paper   Add to My Lib

Abstract:

在4个序批式反应器中,分别考察了氮磷正常供给、磷缺乏、氮缺乏及氮磷同时缺乏对污泥沉降性能和丝状菌生长的影响。结果显示:磷缺乏会导致聚磷菌流失,限制菌胶团菌对碳源的贮存和利用,导致胞外聚合物中蛋白质的含量减少,SVI达到200~250ml·g-1;氮缺乏对聚磷菌生长及菌胶团菌贮存利用碳源的影响较小,能刺激菌胶团菌大量分泌蛋白质,SVI低于100ml·g-1;短期内氮磷同时缺乏会导致污泥沉降性能恶化,但经长期驯化后微生物种群结构会发生较大改变,丝状菌数量减少,且会滋生大量球状菌胶团菌,SVI在120ml·g-1左右。进水磷缺乏的优势丝状菌为N.limicolaⅡ;进水氮缺乏的优势丝状菌为Type0092;进水氮磷同时缺乏的优势丝状菌为N.limicolaI。氮磷缺乏所滋生的丝状菌种类对污泥沉降性能均只能产生有限的影响。

References

[1]  Eikelboom D H. Process Control of Activated Sludge Plants by Microscopic Investigation[M]. London, UK: IWA Publishing, 2000: 127-143
[2]  Martins A M P, Pagilla K, Heijnen J J, van Loosdrecht M C M. Filamentous bulking sludge-a critical review[J]. Water Research, 2004, 38(4): 793-817
[3]  Zhang Zijie (张自杰). Wastewater Engineering[M]. 2nd ed. Beijing: China Construction Industry Press, 2000: 101-105
[4]  Peng Y, Gao C, Wang S, Ozaki M, Takigawa A. Non-filamentous sludge bulking caused by a deficiency of nitrogen in industrial wastewater treatment[J]. Water Science and Technology, 2003, 47(11): 289-295
[5]  Kenny R. Nutrient optimization for pulp and paper wastewater treatment plants-an opportunity for major cost savings[J]. Pulp & Paper-Canada, 2010, 111(2): 20-24
[6]  Chen Ying (陈滢), Peng Yongzhen (彭永臻), Liu Min (刘敏), Wang Shuying (王淑莹), Liang Xiurong (梁秀荣), Gao Chundi (高春娣). Effect of nutrient on sludge settling property and bulking controls[J]. Environmental Science (环境科学), 2004(6): 54-58
[7]  Yang Xiong (杨雄),Huo Mingxin (霍明昕), Wang Shuying (王淑莹), Guo Jianhua (郭建华), Wang Zhongwei (王中玮), Peng Yongzhen (彭永臻),Zhang Leilei (张蕾蕾). Effects of carbon sources on sludge settleability and microbial community structure[J]. CIESC Journal (化工学报), 2011, 62(12): 3471-3477
[8]  Oehmen A, Keller-Lehmann B, Zeng R J, Yuan Z G, Keller E. Optimisation of poly-beta-hydroxyalkanoate analysis using gas chromatography for enhanced biological phosphorus removal systems[J]. Journal of Chromatography A, 2005, 1070(1/2): 131-136
[9]  APHA. Standard Methods for the Examination of Water and Wastewater[M]. 20th ed.Washington DC,USA: American Water Works Association and Water Environment Federation, 1998: 233-245
[10]  Liu H, Fang H H P. Extraction of extracellular polymeric substances (EPS) of sludges[J]. Journal of Biotechnology, 2002, 95(3): 249-256
[11]  Loy A, Maixner F, Wagner M, Horn M. probeBase-an online resource for rRNA-targeted oligonucleotide probes: new features 2007[J]. Nucleic Acids Research, 2007, 35: D800-D804
[12]  Lou I C, de los Reyes F L. Clarifying the roles of kinetics and diffusion in activated sludge filamentous bulking[J]. Biotechnology and Bioengineering, 2008, 101(2): 327-336
[13]  Schuler A J, Jenkins D, Ronen P. Microbial storage products, biomass density, and settling properties of enhanced biological phosphorus removal activated sludge[J]. Water Science and Technology, 2001, 43(1): 173-180
[14]  Sponza D T. Extracellular polymer substances and physicochemical properties of flocs in steady-and unsteady-state activated sludge systems[J]. Process Biochemistry, 2002, 37(9): 983-998
[15]  Liao B Q, Allen D G, Droppo I G, Leppard G G, Liss S N. Surface properties of sludge and their role in bioflocculation and settleability[J]. Water Research, 2001, 35(2): 339-350
[16]  Shin H S, Kang S T, Nam S Y. Effect of carbohydrate and protein in the EPS on sludge settling characteristics[J]. Water Science and Technology, 2001, 43(6): 193-196
[17]  Urbain V, Block J C, Manem J. Bioflocculation in activated-sludge-an analytic approch[J]. Water Research, 1993, 27(5): 829-838
[18]  Cenens C, Smets I Y, Van Impe J F. Modeling the competition between floc-forming and filamentous bacteria in activated sludge waste water treatment systems(Ⅱ): A prototype mathematical model based on kinetic selection and filamentous backbone theory[J]. Water Research, 2000, 34(9): 2535-2541
[19]  Noutsopoulos C, Mamais D, Andreadakis A. A hypothesis on Microthrix parvicella proliferation in biological nutrient removal activated sludge systems with selector tanks[J]. FEMS Microbiology Ecology, 2012, 80(2): 380-389
[20]  Jenkins D, Richard M G,Daigger G T. Manual on the Causes and Control of Activated Sludge Bulking, Foaming, and Other Solids Separation Problems[M]. 3rd ed. London, UK: IWA Publishing, 2000: 23-45
[21]  Arun V, Mino T, Matsuo T. Biological mechanism of acetate uptake mediated by carbohydrate consumption in excess phosphorus removal systems[J]. Water Research, 1988, 22(5): 565-570
[22]  Pereira H, Lemos P C, Reis M A M, Crespo J P S G, Carrondo M J T, Santos H. Model for carbon metabolism in biological phosphorus removal processes based on in vivo 13C NMR labelling experiments[J]. Water Research, 1996, 30(9): 2128-2138
[23]  Wen Q X, Chen Z Q, Tian T, Chen W. Effects of phosphorus and nitrogen limitation on PHA production in activated sludge[J]. Journal of Environmental Sciences-China, 2010, 22(10): 1602-1607
[24]  Peng G, Ye F X, Li Y. Investigation of extracellular polymer substances (EPS) and physicochemical properties of activated sludge from different municipal and industrial wastewater treatment plants[J]. Environmental Technology, 2012, 33(8): 857-862
[25]  Martinez F, Lema J, Mendez R, Cuervo-Lopez F, Gomez J. Role of exopolymeric protein on the settleability of nitrifying sludges[J]. Bioresource Technology, 2004, 94(1): 43-48
[26]  Ehlers G A C, Wagachchi D,Turner S J. Nutrient conditions and reactor configuration influence floc size distribution and settling properties[J]. Water Science and Technology, 2012, 65(1): 156-163

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133