Linnhoff B. The pinch design method for heat exchanger networks[J]. Chemical Engineering Science, 1983, 38(5): 745-763
[2]
Yee T F, Grossmann I E. Simultaneous optimization models for heat integrations(Ⅱ): Heat exchanger network synthesis[J]. Computers & Chemical Engineering, 1990, 14(10):1165-1184 Computers target="_blank">
[3]
Ponce-Ortega M J, Serna-González M, Jiménez-Gutiérrez A. Synthesis of multipass heat exchanger networks using genetic algorithms[J]. Computers & Chemical Engineering, 2008, 32(10): 2320-2332 Computers target="_blank">
[4]
Reddy K A, Rao C D P, Davies G S. Synthesis of multipass heat exchanger networks[J]. AIChE Journal, 1998, 44(4): 999-1002
[5]
Galli R M, Cerda J. Synthesis of heat exchanger networks featuring a minimum number of constrained size shells of 1-2 type[J]. Applied Thermal Engineering, 2000, 20(15/16): 1443-1467
[6]
Ponce-Ortega M J, Serna-González M, Jiménez-Gutiérrez A. Design and optimization of multipass heat exchangers[J]. Chemical Engineering and Processing, 2008, 47: 906-913
[7]
Gulyani B B, Khanam S, Mohanty B. A new approach for shell targeting of a heat exchanger network[J]. Computers & Chemical Engineering, 2009, 33(9): 1460-1467 Computers target="_blank">
[8]
Fieg G, Hou X R, Luo X, Ma H G. The optimal design of heat exchanger networks considering heat exchanger types[J]. Computer Aided Chemical Engineering, 2009, 26: 659-664
[9]
Vengateson U. Design of multiple shell and tube heat exchangers in series: E shell and F shell[J]. Chemical Engineering Research and Design, 2010, 88(5): 725-736
[10]
Li S J, Yao P J. Synthesis of heat exchanger network considering multipass heat exchangers[J]. Chinese Journal of Chemical Engineering, 2001, 9(3): 242-246
[11]
Li Shaojun (李绍军), Xiu Naiyun (修乃云), Yao Pingjing (姚平经). Study on the synthesis rules of minimizing annual cost heat exchanger network on the basis of shells' number[J]. Journal of Dalian University of Technology (大连理工大学学报), 2000, 40(1): 49-53
[12]
Isafiade A J, Fraser D M. Interval-based MINLP superstructure synthesis of heat exchange networks[J]. Chemical Engineering Research and Design, 2008, 86(3): 245-257
[13]
Aleksander S, Zdravko K. Simultaneous MINLP synthesis of heat exchanger networks comprising different exchanger types[J]. Computers & Chemical Engineering, 2002, 26(4/5): 599-615
[14]
Zhao Ye (赵野), Sun Lin (孙琳), Luo Xionglin (罗雄麟). Research advances in pinch and the synthesis of multipass heat exchanger networks[J]. Chemical Industry and Engineering Progress (化工进展), 2012, 31(8): 1685-1689
[15]
Ravagnani M A S S, Silva A P, Arroyo P A, Constantino A A. Heat exchanger network synthesis and optimization using genetic algorithm[J]. Applied Thermal Engineering, 2005, 25(7): 1003-1017
[16]
Sun L, Luo X L. Synthesis of multipass heat exchanger networks based on pinch technology[J]. Computers & Chemical Engineering, 2011, 35(7): 1257-1264 Computers target="_blank">
[17]
Sun Lin (孙琳), Zhao Ye (赵野), Luo Xionglin (罗雄麟). Minimum temperature difference analysis and pinch technology of multi-tube heat exchanger networks[J]. CIESC Journal (化工学报), 2012, 63(9): 2991-2999
[18]
Li Zhihong (李志红), Yin Qinghua (尹清华), Hua Ben (华贲). Progress and prospect in the study of optimal synthesis of heat exchanger network[J]. Petroleum Refinery Engineering (炼油设计), 1997, 27(3): 5-9
[19]
Jiang Ning (蒋宁), Li Lin (李林), Gao Zengliang (高增梁). ΔT-contribution method for heat exchanger network based on optimization of parameters k and z[J]. CIESC Journal (化工学报), 2011, 62(4): 1014-1019
[20]
Lein T. Heat exchanger network synthesis using HENCALC (a Matlab computer program) and second law insights[D]. Lowell: University of Massachusetts Lowell, 1998