全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2014 

丙烯醇催化氨化合成3-甲基吡啶催化剂的制备及性能

DOI: 10.3969/j.issn.0438-1157.2014.03.020, PP. 905-911

Keywords: 丙烯醇,3-甲基吡啶,分子筛,催化(作用),氨化,Zn12/H-ZSM-5(80),固定床

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用浸渍法制备了一系列H-ZSM-5分子筛负载过渡金属锌催化剂,在固定床反应器上考察了这些催化剂对丙烯醇催化氨化合成3-甲基吡啶的催化性能。通过对H-ZSM-5的硅铝比、锌负载量对催化剂催化性能影响的考察,发现硅铝比为80、锌负载量为12%时得到的催化剂Zn12/H-ZSM-5(80)的催化性能最佳。在常压、反应温度420℃、氨醇摩尔比3:1、空速300h-1条件下,丙烯醇在该催化剂上的转化率和3-甲基吡啶的选择性分别达到97.8%和37.9%。利用X射线衍射(XRD)、X射线光电子能谱(XPS)以及吡啶吸附红外对催化剂进行了表征,结果表明,Zn12/H-ZSM-5(80)上负载的Zn2+为L酸;在丙烯醇生成3-甲基吡啶的反应过程中催化剂的脱氢活性物种为氧化锌,而加成和环合反应则主要是由催化剂中的L酸催化实现的。

References

[1]  Benco L, Bucko T, Hafner J. Dehydrogenation of propane over ZnMOR. Static and dynamic reaction energy diagram[J]. Journal of Catalysis, 2011, 277(1/2/3): 104-116
[2]  Ren Y, Zhang F, Hua W, Yue Y, Gao Z. ZnO supported on high silica HZSM-5 as new catalysts for dehydrogenation of propane to propene in the presence of CO2[J]. Catalysis Today, 2009, 148(3/4): 316-322
[3]  Mu?i? A, Batista J, Levec J. Gas-phase catalytic dehydrogenation of methanol to formaldehyde over ZnO/SiO2 based catalysts, zeolites, and phosphates[J]. Applied Catalysis A: General, 1997, 165(1/2): 115-131
[4]  Shimizu S, Abe N, Iguchi A, Dohba M, Sato H, Hirose K. Synthesis of pyridine bases on zeolite catalyst[J]. Microporous and Mesoporous Materials, 1998, 21(4/5/6): 447-451
[5]  Kesi? ?, Luki? I, Brki? D, Rogan J, Zduji? M, Liu H, Skala D. Mechanochemical preparation and characterization of CaO·ZnO used as catalyst for biodiesel synthesis[J]. Applied Catalysis A: General, 2012, 427/428: 58-65
[6]  Shi L, Tao K, Yang R, Meng F, Xing C, Tsubaki N. Study on the preparation of Cu/ZnO catalyst by sol-gel auto-combustion method and its application for low-temperature methanol synthesis[J]. Applied Catalysis A: General, 2011, 401(1/2): 46-55
[7]  Shishido T, Song Z, Kadowaki E, Wang Y, Takehira K. Vapor-phase oxidation of 3-picoline to nicotinic acid over Cr1-xAlxVO4 catalysts[J]. Applied Catalysis A: General, 2003, 239(1/2): 287-296
[8]  Srinivas D, H?lderich W F, Kujath S, Valkenberg M H, Raja T, Saikia L, Hinze R, Ramaswamy V. Active sites in vanadia/titania catalysts for selective aerial oxidation of β-picoline to nicotinic acid[J]. Journal of Catalysis, 2008, 259(2): 165-173
[9]  Rosas C B, Smith G B. 42 Optimization of consecutive, bimolecular reaction systems: a commercial synthesis of nicotinamide[J]. Chemical Engineering Science, 1980, 35(1/2): 330-337
[10]  Beschke H, Friedrich H, Schreyer C. Production of pyridine and 3-methyl pyridine[P]: GB, 1512650. 1978-6-1
[11]  Kulkarni S J, Ramachandra R R, Subrahmanyam M, Rao A V R. Synthesis of pyridine and picolines from ethanol over modified ZSM-5 catalysts[J]. Applied Catalysis A: General, 1994, 113(1): 1-7
[12]  Ramachandra R R, Kulkarni S J, Subrahmanyam M, Rao A V R. Synthesis of pyridine and picolines over modified silica-alumina and ZSM-5 catalysts[J]. Reaction Kinetics, Mechanisms and Catalysis, 1995, 56(2): 301-309
[13]  Jiang Feng(姜枫), Xiao Guomin(肖国民), Lü Jianhua(吕建华). Progress of preparation of 3-methylpyridine[J]. Chemical Industry Times(化工时刊), 2009, 23(10):50-55
[14]  Jin F, Cu Y, Li Y. Effect of alkaline and atom-planting treatment on the catalytic performance of ZSM-5 catalyst in pyridine and picolines synthesis[J]. Applied Catalysis A: General, 2008, 350(1): 71-78
[15]  Liu Y, Yang H, Jin F, Zhang Y, Li Y. Synthesis of pyridine and picolines over Co-modified HZSM-5 catalyst[J]. Chemical Engineering Journal, 2008, 136(2/3): 282-287
[16]  Slobodník M, Hronec M, Cvengro?ová Z, Kaszonyi A. Synthesis of pyridines over modified ZSM-5 catalysts[J]. Studies in Surface Science and Catalysis, 2005, 158: 1835-1842
[17]  Zhang Y, Xu W, Zhao J. Synthesis of phenylacetonitrile by amination of styrene oxide catalyzed by a bimetallic catalyst Zn30.1Cr4.3/γ-Al2O3[J]. RSC Advances, 2012, 2(16): 6590-6598
[18]  Ching-Yeh Shiau, Chen S, Tsai J C, Lin S I. Effect of zinc addition on copper catalyst in isoamyl alcohol dehydrogenation[J]. Applied Catalysis A: General, 2000, 198(1/2): 95-102
[19]  Barr T L, Hackenberg J J. Determination of the onset of the dezincification of alpha-brass using X-ray photoelectron (ESCA) spectroscopy[J]. Journal of the American Chemical Society, 1982, 104(20): 5390-5394
[20]  Dumbuya K, Denecke R, Steinrück H P. Surface analysis of Pd/ZnO catalysts dispersed on micro-channeled Al-foils by XPS[J]. Applied Catalysis A: General, 2008, 348(2): 209-213
[21]  Triwahyono S, Jalil A A, Mukti R R, Musthofa M, Razali N A M, Aziz M A A. Hydrogen spillover behavior of Zn/HZSM-5 showing catalytically active protonic acid sites in the isomerization of n-pentane[J]. Applied Catalysis A: General, 2011, 407(1/2): 91-99
[22]  Martínez A, López C. The influence of ZSM-5 zeolite composition and crystal size on the in situ conversion of Fischer-Tropsch products over hybrid catalysts[J]. Applied Catalysis A: General, 2005,294(2): 251-259
[23]  Mao Dongsen(毛东森), Xia Jianchao(夏建超). Effects of silicon to aluminum ratio and crystal size of zeolite on catalytic properties of Cu-ZnO-Al2O3/HZSM-5 for the direct synthesis of dimethyl ether from syngas[J]. Journal of Fuel Chemistry and Technology(燃料化学学报), 2012, 40(2): 235-240
[24]  Cao Rong(曹荣), Zhao Hong(赵洪), Cheng Jinjie(程谨杰), Yang Yashu(杨亚书). Synergistic mechanism of ethane and ethene over Zn/HZSM-5 zeolite[J]. Chemical Research in Chinese Universities(高等学校化学学报), 1996, 17(1): 102-106

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133