全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2014 

基于喷射式热泵的热电联产供热系统

DOI: 10.3969/j.issn.0438-1157.2014.03.036, PP. 1025-1032

Keywords: 设计,集中供热,喷射式热泵,回收,实验验证

Full-Text   Cite this paper   Add to My Lib

Abstract:

热电联产面临着两个严重问题:供热面积与质量的增加导致供热不足;电厂凝汽器循环冷却水存在大量低品质热量浪费。为同时解决这两个问题,提出了一种利用喷射式热泵强化集中供热的新型EDH-CHP系统。该系统从循环冷却水中回收余热,并将余热应用于集中供热;另外通过增大供热一次网的供回水温差提高原一次网的供热能力。与原系统相比,新型系统在热力首站和热力站分别增加一台喷射式热泵(HP1、HP2)。分别对两台喷射式热泵进行热力学分析及性能实验研究。分析结果表明:HP1和HP2均能有效提高系统性能。实验结果表明:HP1的COP可达1.4~1.9,HP2可降低一次网回水至35℃。经典案例分析表明:新型系统可增加50%供热能力或减少6%能源消耗。

References

[1]  Li H N, Russell N, Sharifi V, Swithenbank J. Techno-economic feasibility of absorption heat pumps using wastewater as the heating source for desalination[J]. Desalination, 2011, 281: 118-127
[2]  El-Dessouky H, Ettouney H, Alatiqi I, Al-Nuwaibit G. Evaluation of steam jet ejectors[J]. Chem. Eng. Process., 2002, 41(6): 551-561
[3]  Keenan J H, Neumann E P, Lustwerk F. An investigation of ejector design by analysis and experiment[J]. J. Appl. Mech.-T. Asme, 1950, 17(3):299-309
[4]  Munday J T, Bagster D F. A new ejector theory applied to steam jet refrigeration[J]. Ind. Eng. Chem. Process Des. Dev., 1977,16(4): 442-449
[5]  Chen L T. Heat driven mobile refrigeration cycle analysis[J]. Energy Conversion, 1978, 18(1):25-29
[6]  Khattab N M, Barakat M H. Modeling the design and performance characteristics of solar steam-jet cooling for comfort air conditioning[J]. Sol. Energy, 2002, 73(4):257-267
[7]  Shen Shengqiang (沈胜强), Zhang Kun (张琨), Liu Jia (刘佳), Yang Yong (杨勇). Experimental investigation on performance of adjustable ejector[J]. CIESC Journal (化工学报), 2009, 60(6): 1398-1401
[8]  Zhu Yinhai (祝银海), Li Yanzhong (厉彦忠), Yu Jianlin (鱼剑琳). Experimental validation of a hybrid ejector model with refrigerant R141B[J]. Journal of Chemical Industry and Engineering (China) (化工学报), 2008, 59(9): 2188-2193
[9]  Varga S, Oliveira A C, Diaconu B. Influence of geometrical factors on steam ejector performance—a numerical assessment[J]. Int. J. Refrig., 2009, 32(7): 1694-1701
[10]  Zhang B, Shen S Q. A theoretical study on a novel bi-ejector refrigeration cycle[J]. Appl. Therm. Eng., 2006, 26(5/6): 622-626
[11]  Xu Haitao (徐海涛), Sang Zhifu (桑芝富). Thermodynamic models for calculating entrainment ratio of steam-jet ejector[J]. Journal of Chemical Industry and Engineering (China) (化工学报), 2004, 55(5): 704-710
[12]  Huang B J, Chang J M, Wang C P, Petrenko V A. A 1-D analysis of ejector performance[J]. Int. J. Refrig., 1999, 22(5):354-364
[13]  Gustafsson J, Delsing J, van Deventer J. Improved district heating substation efficiency with a new control strategy[J]. Appl. Energy, 2010, 87(6): 1996-2004
[14]  Sun F T, Fu L, Zhang S G, Sun J. New waste heat district heating system with combined heat and power based on absorption heat exchange cycle in China[J]. Appl. Therm. Eng., 2012, 37: 136-144
[15]  Kelly S, Pollitt M. An assessment of the present and future opportunities for combined heat and power with district heating (CHP-DH) in the United Kingdom[J]. Energy Policy, 2010, 38(11): 6936-6945
[16]  Knutsson D, Werner S, Ahlgren E O. Combined heat and power in the Swedish district heating sector—impact of green certificates and CO2 trading on new investments[J]. Energy Policy, 2006, 34(18): 3942-3952
[17]  Rolfsman B. Combined heat-and-power plants and district heating in a deregulated electricity market[J]. Appl. Energy, 2004, 78(1): 37-52
[18]  Lyb?k R. Discovering market opportunities for future CDM projects in Asia based on biomass combined heat and power production and supply of district heating[J]. Energy Sustain. Dev., 2008, 12(2): 34-48
[19]  Marbe ?, Harvey S. Opportunities for integration of biofuel gasifiers in natural-gas combined heat-and-power plants in district-heating systems[J]. Appl. Energy, 2006, 83(7): 723-748
[20]  Abrahamse W, Steg L, Vlek C, Rothengatter T. A review of intervention studies aimed at household energy conservation[J]. J. Environ. Psychol., 2005, 25(3): 273-291
[21]  Lund H, Moller B, Mathiesen B V, Dyrelund A. The role of district heating in future renewable energy systems[J]. Energy, 2010, 35(3): 1381-1390
[22]  Yildirim N, Toksoy M, Gokcen G. Piping network design of geothermal district heating systems: case study for a university campus[J]. Energy, 2010, 35(8): 3256-3262
[23]  Curti V, von Spakovsky M R, Favrat D. An environomic approach for the modeling and optimization of a district heating network based on centralized and decentralized heat pumps, cogeneration and/or gas furnace(Ⅰ): Methodology[J]. Int. J. Therm. Sci., 2000, 39(7): 721-730
[24]  Curti V, Favrat D, von Spakovsky M R. An environomic approach for the modeling and optimization of a district heating network based on centralized and decentralized heat pumps, cogeneration and/or gas furnace(Ⅱ): Application[J]. Int. J. Therm. Sci., 2000, 39(7): 731-741
[25]  Su Baoqing (苏保青). District heating technology research of using heat pump to recycle condensing heat in power plant[J]. Shanxi Energy and Conservation (山西能源与节能), 2007, 3: 18-19
[26]  Li Y, Fu L, Zhang S G, Zhao X L. A new type of district heating system based on distributed absorption heat pumps[J]. Energy, 2011, 36(7): 4570-4576
[27]  Keil C, Plura S, Radspieler M, Schweigler C. Application of customized absorption heat pumps for utilization of low-grade heat sources[J]. Appl. Therm. Eng., 2008, 28(16): 2070-2076
[28]  Zhao X L, Fu L, Zhang S G. General thermodynamic performance of irreversible absorption heat pump[J]. Energ. Convers. Manage., 2011, 52(1): 494-499

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133