全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2014 

固体材料对微型钝体燃烧器吹熄极限的影响

DOI: 10.3969/j.issn.0438-1157.2014.03.034, PP. 1012-1017

Keywords: 微尺度,吹熄极限,固体材料,流场,传热,数值模拟

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过数值模拟研究了固体材料(石英、不锈钢和SiC)对微型钝体燃烧器内氢气/空气预混火焰的吹熄极限的影响。结果表明:计量比为0.5时,3个燃烧器对应的吹熄极限分别为36、25和21m·s-1。理论分析揭示了微型钝体燃烧器中火焰稳定性与流动和传热之间的相互作用非常密切。当热导率较小时,通过壁面向上游传导的热量较少,壁面对未燃预混气的预热效果较差,燃烧后的气体膨胀相对较弱,从而钝体后的低速区面积较大,稳燃效果较好。对于不锈钢和SiC燃烧器,由于SiC的发射率更大,通过壁面的散热损失较大,从而使得其吹熄极限较小。为获得良好稳燃性能的微型钝体燃烧器选择合适的材料提供了指导。

References

[1]  Fan A W, Minaev S, Nukamura H, Kumar S, Liu W. Experimental investigation on flame pattern formations of DME-air mixtures in a radial microchannel[J]. Combustion and Flame, 2010, 157: 1637-1642
[2]  Fan A W, Wan J L, Maruta K, Nakamura H, Yao H, Liu W. Flame dynamics in a heated meso-scale radial channel[J]. Proceedings of the Combustion Institute, 2013, 34(2):3351-3359
[3]  Fan A W, Maruta K, Nakamura H, Liu W. Experimental investigation of flame pattern transitions in a heated radial micro-channel[J]. Applied Thermal Engineering, 2012, 47(5): 111-118
[4]  Fan Aiwu(范爱武), Yao Hong(姚洪), Liu Wei(刘伟). Micro Combustion(微小尺度燃烧)[M]. Beijing: Science Press, 2012:1-8
[5]  Ju Y G,Maruta K. Microscale combustion: technology development and fundamental research[J]. Progress in Energy and Combustion Science, 2011, 37(6): 669-715
[6]  Waitz I A, Gauba G, Tzeng Y S. Combustors for micro gas turbine engines[J]. ASME J. Fluids Engineering, 1998, 20: 109-117
[7]  Fan A W, Minaev S, Sereshchenko E V, Tsuboi T, Oshibe H, Nakamura H, Maruta K. Dynamic behavior of splitting flames in a heated channel[J]. Combustion, Explosion and Shock Waves, 2009, 45(3): 245-250
[8]  Fan A W, Minaev S, Kumar S, Liu W, Maruta K. Regime diagrams and characteristics of flame patterns in radial microchannels with temperature gradients[J]. Combustion and Flame, 2008, 153(3): 479-489
[9]  Fan A W, Minaev S, Kumar S, Liu W, Maruta K. Experimental study on flame pattern formation and combustion completeness in a radial microchannel[J]. Journal of Micromachine and Microengineering, 2007, 17(12): 2398-2406
[10]  Fan A W, Minaev S, Sereshchenko E V, Fursenko R, Kumar S, Liu W, Maruta K. Experimental and numerical investiagtions of flame pattern formation in a radial microchannel[J]. Proceedings of the Combustion Institute, 2009, 32(2): 3059-3066
[11]  Cao Bin(曹彬), Chen Guangwen(陈光文), Yuan Quan(袁权). Catalytic combustion of hydrogen/air in microchannel reactor[J]. Journal of Chemical Industry and Engineering(China)(化工学报), 2004, 55(1): 42-47
[12]  Zhang Li(张力), Yan Yunfei(闫云飞), Li Lixian(李丽仙), Ran Jingyu(冉景煜). Numerical investigation of premixed catalytic combustion of methane in micro-combustor[J]. CIESC Journal (化工学报), 2009, 60(3): 627-633
[13]  Sun Zhiwei(孙志伟), Zhang Li(张力), Yan Yunfei(闫云飞). Numerical analysis on the characteristics of carbon deposition of catalytic partial oxidation of methane under gravity[J]. Chemical Industry and Engineering Progress (化工进展), 2012, 31(4): 839-843
[14]  Pan Minqiang(潘敏强), Tang Yong(汤勇), Lu Longsheng(陆龙生), Zhang Yihong(张铱洪), Li Yong(李勇). Development in fuel processors for hydrogen production based on sheet lamination technology[J]. Chemical Industry and Engineering Progress (化工进展), 2006, 25(9): 1011-1017
[15]  Zhong B J, Wang J H. Experimental study on premixed CH4/air mixture combustion in micro Swiss-roll combustors[J]. Combustion and Flame, 2010, 157:2222-2229
[16]  Jiang L Q, Zhao D Q, Wang X H, Yang W B. Development of a self-thermal insulation miniature combustor[J]. Energy Conversion and Management, 2009, 50(5): 1308-1313
[17]  Wan Jianlong(万建龙), Cheng Zhe(程哲),Fan Aiwu(范爱武),Liu Wei(刘伟). Combustion characteristics of hydrogen/air mixture in a micro-combustor with cavities[J]. Journal of Huazhong University of Science and Technology (华中科技大学学报), 2013, 41(1): 6-10
[18]  Khandelwal B, Sahota G P S, Kumar S. Investigations into the flame stability limits in a backward step micro scale combustor with premixed methane-air mixtures[J]. Journal of Micromechanics and Microengineering, 2010, 20: 095030
[19]  Wan J L, Fan A W, Maruta K, Yao H, Liu W. Experimental and numerical investigation on combustion characteristics of premixed hydrogen/air flame in a micro-combustor with a bluff body[J]. Internal Journal of Hydrogen Energy, 2012, 37: 19190-19197
[20]  Fan A W, Wan J L, Liu Yi, Pi B M, Yao H, Maruta K, Liu W. The effect of the blockage ratio on the blow-off limit of a hydrogen/air flame in a planar micro-combustor with a bluff body[J]. International Journal of Hydrogen Energy, 2013, 38(26):11438-11445
[21]  Beskok A, Karniadakis G E. A model for flows in channels pipes, and ducts at micro and nano scales[J]. Microscale Thermophysical Engineering, 1999, 3: 43-77
[22]  Zhang Yongsheng(张永生), Zhou Junhu(周俊虎), Yang Weijuan(杨卫娟), Liu Maosheng(刘茂省), Cen Kefa(岑可法). Study on the selection for micro-combustion simulation model[J]. Proceedings of the Chinese Society for Electrical Engineering (中国电机工程学报), 2006, 26(25): 81-87
[23]  Kuo C H, Ronney P D. Numerical modeling of non-adiabatic heat-recirculating combustors[J]. Proceedings of the Combustion Institute, 2007, 31: 3277-3284
[24]  Fan A W, Wan J L, Maruta K, Yao H, Liu W. Interactions between heat transfer, flow field and flame stabilization in a micro-combustor with a bluff body[J]. International Journal of Heat and Mass Transfer, 2013, 66: 72-79
[25]  Li J, Zhao Z W, Kazakov A, Dryer F L. An updated comprehensive kinetic model of hydrogen combustion[J]. International Journal of Chemical Kinetics, 2004, 36(10): 1-10

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133