全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2014 

大孔隙率多孔介质内热弥散现象数值模拟

DOI: 10.3969/j.issn.0438-1157.2014.03.015, PP. 870-878

Keywords: 多孔介质,数值模拟,模型,热弥散,孔隙率

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用SurfaceEvolver泡沫演化动力学软件构建理想的大孔隙率多孔介质的几何模型:Weaire-Phelan模型。通过对有效热导率的计算,确定了该模型的适用范围。在此基础上优选两组几何参数作为计算依据,流体相分别采用空气和水,固体相为铝T-6201,通过数值模拟,研究了孔径、Darcy速度和流-固热扩散系数比的影响。数值计算结果表明:孔径越小,热弥散效应越强,流体本身的热物性对弥散的影响越明显;横向分量远小于纵向分量。当工质为气体时,横向分量可以忽略不计,最后得到了计算纵向与横向热弥散系数的经验关联式。

References

[1]  Lu T J, Stone H A, Ashby M F. Heat transfer in open-cell metal foams[J]. Acta Mater., 1998, 46(10): 3619-3635
[2]  Dukhan N, Chen K C. Heat transfer measurements in metal foam subjected to constant heat flux[J]. Experimental Thermal and Fluid Science, 2007, 32(2): 624-631
[3]  Lu W, Zhao C Y, Tassou S A. Thermal analysis on metal-foam filled heat exchangers(Ⅰ): Metal-foam filled pipes[J]. International Journal of Heat and Mass Transfer, 2006, 49(15/16): 2751-2761
[4]  Zhao C Y, Lu T J, Hodson H P, et al. Natural convection in metal foams with open cells[J]. International Journal of Heat and Mass Transfer, 2005, 48(12): 2452-2463
[5]  Zhao C Y, Lu W, Tassou S A. Thermal analysis on metal-foam filled heat exchangers(Ⅱ): Tube heat exchangers[J]. International Journal of Heat and Mass Transfer, 2006, 49(15/16): 2762-2770
[6]  Slichter C S. Field measurements of the rate of movement of underground waters[R]. United States Geological Survey Water-Supply and Irrigation Paper, 1905
[7]  Aris R. On the dispersion of a solute by diffusion, convection and exchange between phases[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1959, 252(1271): 538-550
[8]  Aris R. On the dispersion of a solute in a fluid flowing through a tube[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1956, 235(1200): 67-77
[9]  Hsu C T, Cheng P. Thermal dispersion in a porous medium[J]. Int. J. Heat Mass Transfer, 1990, 33(8): 1587-1597
[10]  Hsiao K T, Advani S G. Modified effective thermal conductivity due to heat dispersion in fibrous porous media[J]. Int. J. Heat Mass Transfer, 1999, 42: 1237-1254
[11]  Moyne C, Didierjean S, Amaral Souto H P, da Silveira O T. Thermal dispersion in porous media: one equation model[J]. Int. J. Heat Mass Transfer, 2000, 43: 3853-3867
[12]  Kuwahara F, Nakayama A. Numerical determination of thermal dispersion coefficients using a periodic porous structure[J]. Journal of Heat Transfer, 1999, 121 (2):160-163
[13]  Pedras M H J, de Lemos M J S. Thermal dispersion in porous media as a function of the solid-fluid conductivity ratio[J]. International Journal of Heat and Mass Transfer, 2008, 51(21/22): 5359-5367
[14]  Shi Junrui(史俊瑞), Li Benwen(李本文), Xu Youning(徐有宁),Xue Zhijia(薛治家),Wang Shuqun(王树群). Flame characteristics for diffusion filtration combustion[J].CIESC Journal(化工学报), 2012, 63(11): 3500-3505
[15]  Delgado J M P Q. A critical review of dispersion in packed beds[J]. Heat and Mass Transfer, 2005, 42(4): 279-310
[16]  Goldsztein G H. Solute transport in porous media: dispersion tensor of periodic networks[J]. Applied Physics Letters, 2007, 91(5): 054101-054103
[17]  Carbonell R G, Whitaker S. Dispersion in pulsed systems(Ⅱ): Theoretical developments for passive dispersion in porous media[J]. Chemical Engineering Science, 1983, 38(11): 1795-1802
[18]  Pinson F, Gregoire O, Quintard M, Simonin O. Modeling of turbulent heat transfer and thermal dispersion for flows in flat plate heat exchangers[J]. International Journal of Heat and Mass Transfer, 2007, 50(7/8): 1500-1515
[19]  Sahraoui M, Kaviany M. Slip and no-slip temperature boundary conditions at interface of porous plain media: convection[J]. International Journal Heat Mass Transfer, 1994, 37(6): 1029-1044
[20]  Didierjean S, Amaral Souto H P, Delannay R, Moyne C. Dispersion in periodic porous media. Experience versus theory for two-dimensional systems[J]. Chemical Engineering Science, 1997, 52(12): 1861-1874
[21]  Krishnan S, Murthy J Y, Garimella S V. Direct simulation of transport in open-cell metal foam[J]. Journal of Heat Transfer, 2006, 128(8): 793-799
[22]  Kaviany M. Principles of Heat Transfer in Porous Media[M]. 2nd ed. New York: Springer, 1995: 121-216
[23]  Bhattacharya A, Calmidi V V, Mahajan R L. Thermophysical properties of high porosity metal foam[J]. International Journal of Heat and Mass Transfer, 2002,45:1017-1031
[24]  Boomsma K, Poulikakos D. On the effective thermal conductivity of a three dimensionally structured fluid-saturated metal foam[J]. International Journal of Heat and Mass Transfer, 2001, 44:827-836
[25]  Banhart J. Manufacture, characterization and application of cellular metals and metal foams[J]. Progress in Materials Science, 2001, 46: 559-632
[26]  Zhao C Y. Review on thermal transport in high porosity cellular metal foams with open cells[J]. International Journal of Heat and Mass Transfer, 2012, 55(13/14): 3618-3632
[27]  Dukhan N. Correlations for the pressure drop for flow through metal foam[J]. Experiments in Fluids, 2006, 41(4): 665-672
[28]  Inayat A, Schwerdtfeger J, Freund H, Korner C. Periodic open-cell foams: pressure drop measurements and modeling of an ideal tetrakaidecahedra packing[J]. Chemical Engineering Science, 2011, 66(12): 2758-2763
[29]  Habisreuther P, Djordjevic N, Zarzalis N. Statistical distribution of residence time and tortuosity of flow through open-cell foams[J]. Chemical Engineering Science, 2009, 64(23): 4943-4954
[30]  Singh R, Kasana H S. Computational aspects of effective thermal conductivity of highly porous metal foams[J]. Applied Thermal Engineering, 2004, 24(13): 1841-1849
[31]  Calmidi V V, Mahajan R L. Forced convection in high porosity metal foams[J]. Journal of Heat Transfer, 2000, 122: 557-565
[32]  Calmidi V V, Mahajan R L. The effective thermal conductivity of high porosity fibrous metal foams[J]. Journal of Heat Transfer, 1999, 121: 466-471
[33]  Boomsma K,Poulikakos D, Ventikos Y. Simulations of flow through open cell metal foams using an idealized periodic cell structure[J]. International Journal of Heat and Fluid Flow, 2003, 24(6): 825-834
[34]  Krishnan S, Garimella S V, Murthy J Y. Simulation of thermal transport in open-cell metal foams: effect of periodic unit-cell structure[J]. Journal of Heat Transfer, 2008, 130(2): 024503-1-024503-5

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133