全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2014 

微反应器内入口结构对Taylor气泡形成过程的影响

DOI: 10.3969/j.issn.0438-1157.2014.03.006, PP. 805-812

Keywords: 泰勒流,两相流,计算流体力学,微通道,微反应器,入口结构

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用计算流体力学方法,考察了微通道入口结构、气液比及两相混合速度对Taylor气泡形成过程的影响,模拟结果与可视化实验符合良好。与单纯流体体积法相比,水平集法(levelset)和流体体积法(volumeoffluid)相耦合的方法(coupledlevelsetandvolumeoffluidmethod,CLSVOF)可获得更精确的气液界面,且CLSVOF法结果与实验结果更符合。数值模拟结果发现,通道入口结构及气液比对气泡长度、气泡生成频率及气泡体积有很大影响。气液比恒定,不同通道入口结构,两相混合速度对气泡长度有不同影响。

References

[1]  Zhao Y, Hemminger O, Fan L S. Experiment and lattice Boltzmann simulation of two-phase gas-liquid flows in microchannels[J]. Chemical Engineering Science, 2007, 62(24): 7172-7183
[2]  Tan J, Li S W, Wang K, Luo G S. Gas-liquid flow in T-junction microfluidic devices with a new perpendicular rupturing flow route[J]. Chemical Engineering Journal, 2009, 146(3): 428-433
[3]  Kashid M N, Kiwi-Minsker L. Microstructured reactors for multiphase reactions: state of the art[J]. Industrial & Engineering Chemistry Research, 2009, 48(14): 6465-6485
[4]  Chen Guangwen (陈光文), Zhao Yuchao (赵玉潮), Yue Jun (乐军), Dong Zhengya (董正亚), Cao Haishan (曹海山), Yuan Quan (袁权). Transport phenomena in micro-chemical engineering[J]. CIESC Journal(化工学报), 2013, 64(1): 63-75
[5]  Luo Guangsheng (骆广生), Wang Kai (王凯), Lü Yangcheng (吕阳成), Wang Yujun (王玉军), Xu Jianhong (徐建鸿). Research and development of micro-scale multiphase reaction processes[J]. CIESC Journal(化工学报), 2013, 64(1): 165-172
[6]  Chen G W, Yue J, Yuan Q. Gas-liquid microreaction technology: recent developments and future challenges[J]. Chinese Journal of Chemical Engineering, 2008, 16(5): 663-669
[7]  Cabeza V S, Kuhn S, Kulkarni A A, Jensen K F. Size-controlled flow synthesis of gold nanoparticles using a segmented flow microfluidic platform[J]. Langmuir, 2012, 28(17): 7007-7013
[8]  Yen Brian K H, Günther A, Schmidt M A, Jensen K F, Bawendi M G. A microfabricated gas-liquid segmented flow reactor for high-temperature synthesis: the case of cdse quantum dots[J]. Angewandte Chemie International Edition, 2005, 44(34): 5447-5451
[9]  Yasukawa T, Ninomiya W, Ooyachi K, Aoki N, Mae K. Enhanced production of ethyl pyruvate using gas-liquid slug flow in microchannel[J]. Chemical Engineering Journal, 2011, 167(2/3): 527-530
[10]  Bakker J J W, Zieverink M M P, Reintjens R, Kapteijn F, Moulijn J A, Kreutzer M T. Heterogeneously catalyzed continuous-flow hydrogenation using segmented flow in capillary columns[J]. Chemcatchem, 2011, 3(7): 1155-1157
[11]  Ye C B, Chen G W, Yuan Q. Process characteristics of CO2 absorption by aqueous monoethanola mine in a microchannel reactor[J]. Chinese Journal of Chemical Engineering, 2012, 20(1): 111-119
[12]  Ye C B, Dang M H, Yao C Q, Chen G W, Yuan Q. Process analysis on CO2 absorption by monoethanolamine solutions in microchannel reactors[J]. Chemical Engineering Journal, 2013, 225: 120-127
[13]  Thulasidas T C, Abraham M A, Cerro R L. Dispersion during bubble-train flow in capillaries[J]. Chemical Engineering Science, 1999, 54(1): 61-76
[14]  Van Baten J M, Krishna R. CFD simulations of wall mass transfer for Taylor flow in circular capillaries[J]. Chemical Engineering Science, 2005, 60(4): 1117-1126
[15]  Shao N, Salman W, Gavriilidis A, Angeli P. CFD simulations of the effect of inlet conditions on Taylor flow formation[J]. International Journal of Heat and Fluid Flow, 2008, 29(6): 1603-1611
[16]  Yuan Xigang (袁希钢), Song Wenqi (宋文琦). Numerical simulation of gas-liquid two-phase flow pattern in T-junction microchannel[J]. Journal of Tianjin University (天津大学学报), 2012, 45(9): 763-769
[17]  Fu T T, Ma Y G, Funfschilling D, Li H Z. Bubble formation and breakup mechanism in a microfluidic flow-focusing device[J]. Chemical Engineering Science, 2009, 64(10): 2392-2400
[18]  Yue J, Luo L A, Gonthier Y, Chen G W, Yuan Q. An experimental study of air-water Taylor flow and mass transfer inside square microchannels[J]. Chemical Engineering Science, 2009, 64(16): 3697-3708
[19]  Dang Minhui, Yue Jun, Chen Guangwen, Yuan Quan. Formation characteristics of Taylor bubbles in a microchannel with a converging shape mixing junction[J]. Chemical Engineering Journal, 2013, 223(0): 99-109
[20]  Qian D Y, Lawal A. Numerical study on gas and liquid slugs for Taylor flow in a T-junction microchannel[J]. Chemical Engineering Science, 2006, 61(23): 7609-7625
[21]  Kumar V, Vashisth S, Hoarau Y, Nigam K D P. Slug flow in curved microreactors: hydrodynamic study[J]. Chemical Engineering Science, 2007, 62(24): 7494-7504
[22]  Hou Jingxin (侯璟鑫), Qian Gang (钱刚), Zhou Xinggui (周兴贵). Effects of gas inlet angle and cross-section aspect ratio on Taylor bubble behavior in microchannels[J]. CIESC Journal (化工学报), 2013, 64(6): 1976-1982
[23]  Brackbill J U, Kothe D B, Zemach C. A continuum method for modeling surface tension[J]. Journal of Computational Physics, 1992, 100(2): 335-354
[24]  W?rner M. Numerical modeling of multiphase flows in microfluidics and micro process engineering: a review of methods and applications[J]. Microfluidics and Nanofluidics, 2012, 12(6): 841-886
[25]  Sussman M, Puckett E G. A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows[J]. Journal of Computational Physics, 2000, 162(2): 301-337
[26]  Chakraborty I, Biswas G, Ghoshdastidar P S. A coupled level-set and volume-of-fluid method for the buoyant rise of gas bubbles in liquids[J]. International Journal of Heat and Mass Transfer, 2013, 58(1/2): 240-259
[27]  Albadawi A, Donoghue D B, Robinson A J, Murray D B, Delauré Y M C. On the analysis of bubble growth and detachment at low capillary and bond numbers using volume of fluid and level set methods[J]. Chemical Engineering Science, 2013, 90: 77-91
[28]  Garstecki P, Fuerstman M J, Stone H A, Whitesides G M. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up[J]. Lab on a Chip, 2006, 6(3): 437-446

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133