Li J B, Liu X G. Melt index prediction by RBF neural network optimized with an adaptive new ant colony optimization algorithm[J]. Journal of Applied Polymer Science, 2011, 119(5): 3093-3100
[2]
Pham Q T. Dynamic optimization of chemical engineering processes by an evolutionary method[J]. Computers & Chemical Engineering, 1998, 22(7-8): 1089-1097
[3]
Rajesh J, Gupta K, Kusumakar H S, Jayaraman V K, Kulkarni B D. Dynamic optimization of chemical processes using ant colony framework[J]. Computers & Chemistry, 2001, 25(6): 583-595 Computers target="_blank">
[4]
Zhang B, Chen D, Zhao W. Iterative ant-colony algorithm and its application to dynamic optimization of chemical process[J]. Computers & Chemical Engineering, 2005, 29(10): 2078-2086
[5]
Babu B, Angira R. Optimization of Industrial Processes Using Improved and Modified Differential Evolution[J]. Soft Computing Applications in Industry, 2008, 28(10): 1-22
[6]
Sun Fan (孙帆), Du Wenli (杜文莉), Qian Feng (钱锋). An improved differential evolution algorithm and its application in dynamic optimization of fed-batch bioreactor[J]. Journal of Chemical Industry and Engineering (China) (化工学报), 2012, 63(11): 3609-3617
[7]
Roubos J A, De Gooijer C D, Van Straten G, Van Boxtel A. Comparison of optimization methods for fed-batch cultures of hybridoma cells[J]. Bioprocess Engineering, 1997, 17(2): 99-102
[8]
Kennedy J, Eberhart R. Particle swarm optimization. Proceedings of IEEE International Conference on Neural Networks[C]. Perth, Australia: IEEE, 1995: 1942-1948
[9]
Shi Y, Eberhart R. A modified particle swarm optimizer. Proceedings of IEEE World Congress on Computational Intelligence[C]. New York, America: IEEE, 1998: 69-73
[10]
Zhang Bing (张兵), Chen Dezhao (陈德钊), Wu Xiaohua (吴晓华). Graded optimization strategy and its application to chemical dynamic optimization with fixed boundary[J]. Journal of Chemical Industry and Engineering (China) (化工学报), 2006, 56(7): 1276-1280
[11]
Mo Yuanbin (莫愿斌), Chen Dezhao (陈德钊), Hu Shangxu (胡上序). Chaos particle swarm optimization algorithm and its application in biochemical process dynamic optimization[J]. Journal of Chemical Industry and Engineering (China) (化工学报), 2006, 57(9): 2123-2127
[12]
Peng Xin (彭鑫), Qi Rongbin (祁荣宾), Du Wenli (杜文莉), Qian Feng (钱锋). An improved knowledge evolution algorithm and its application to chemical process dynamic optimization[J]. Journal of Chemical Industry and Engineering (China) (化工学报), 2012, 63(3): 841-850
[13]
Luo Xionglin (罗雄麟), Xia Chekui (夏车奎), Sun Lin (孙琳). A dynamic optimization control approach of life cycle energy saving for heat exchanger network with bypasses[J]. Journal of Chemical Industry and Engineering (China) (化工学报), 2013, 64(4): 1340-1350
[14]
Biegler L T, Solution of dynamic optimization problems by successive quadratic programming and orthogonal collocation[J]. Computers & Chemical Engineering, 1984, 8(3): 243-247
[15]
Goh C, Teo K. Control parametrization: a unified approach to optimal control problems with general constraints[J]. Automatica, 1988. 24(1): 3-18
[16]
Liu X G, Chen L, Hu Y Q. Solution of Chemical Dynamic Optimization Using the Simultaneous Strategies[J]. Chinese Journal of Chemical Engineering, 2013, 21(1): 55-63
[17]
Luus R. Optimal control by dynamic programming using accessible grid points and region reduction[J]. Hungarian Journal of Industrial Chemistry, 1989, 17(4): 523-543
[18]
Luus R. Optimization of fed-batch fermentors by iterative dynamic programming[J]. Biotechnology and Bioengineering, 1993, 41(5): 599-602
[19]
Rezende M, Costa C, Costa A, Maciel M, Filho R M. Optimization of a large scale industrial reactor by genetic algorithms[J]. Chemical Engineering Science, 2008, 63(2): 330-341
[20]
Villarreal-Cervantes M G, Cruz-Villar C A, Alvarez-Gallegos J, Portilla-Flores, E A. Differential evolution techniques for the structure-control design of a five-bar parallel robot[J]. Engineering Optimization, 2010, 42(6): 535-565
[21]
Sun F, Zhong W, Cheng H, Qian F. Novel Control Vector Parameterization Method with Differential Evolution Algorithm and Its Application in Dynamic Optimization of Chemical Processes[J]. Chinese Journal of Chemical Engineering, 2013, 21(1): 64-71
[22]
Li J B, Liu X G, Jiang H Q, Xiao Y D. Melt index prediction by adaptively aggregated RBF neural networks trained with novel ACO algorithm[J]. Journal of Applied Polymer Science, 2012, 125(2): 943-951
[23]
Li J B, Liu X G. Melt index prediction by RBF neural network optimized with an MPSO-SA hybrid algorithm[J]. Neurocomputing, 2011, 74(5): 735-740
[24]
Zhang J, Chung H S, Lo W L. Clustering-based adaptive crossover and mutation probabilities for genetic algorithms[J]. IEEE Transactions on Evolutionary Computation, 2007, 11(3): 326-335
[25]
Luus R. Application of iterative dynamic programming to state constrained optimal control problems[J]. Hungarian Journal of Industrial Chemistry, 1991, 19(4): 245-254
[26]
Dadebo S A, McAuley K B. Dynamic optimization of constrained chemical engineering problems using dynamic programming[J]. Computers & Chemical Engineering, 1995, 19(5): 513-525 Computers target="_blank">