全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2014 

油页岩热解的FG-DVC模型

DOI: 10.3969/j.issn.0438-1157.2014.06.048, PP. 2308-2315

Keywords: 油页岩,热解,TG-FTIR,气体,动力学,FG-DVC模型

Full-Text   Cite this paper   Add to My Lib

Abstract:

为研究油页岩结构与热解反应性之间的关系,在TG-FTIR分析仪上对甘肃油页岩在不同升温速率条件下(5、20、50℃·min-1)进行了热解实验研究,对CH4、CO、CO2、H2O和页岩油进行了定量分析,并采用非线性最小二乘拟合方法求解各组分析出的动力学参数,同时采用基于燃料化学结构的FG-DVC模型对各组分的析出过程进行了模拟。结果表明:油页岩的脱挥发分过程主要发生在200~600℃之间;油页岩中有机质所含官能团以脂肪烃为主;由于各官能团活性不同,导致气态产物的析出有先后顺序;由非线性最小二乘拟合方法获得的各种产物析出的活化能E分布在188~239kJ·mol-1之间,而指前因子A在109~1013s-1之间;各产物的FG-DVC模拟结果与实验数据较为相符,这说明用FG-DVC模型来描述甘肃油页岩的热解脱挥发分过程是比较合适的。

References

[1]  Qian jialin(钱家麟), Yin Liang(尹亮). Oil Shale—Petroleum Alternative(油页岩—石油的补充能源)[M]. Beijing: China Pertochemical Press, 2008: 1-2
[2]  Adnan A H, Omar A A, Moh'd A H, Rajab A H. Heating rate effect on fractional yield and composition of oil retorted from El-lajjun oil shale[J]. Journal of Analytical and Applied pyrolysis, 2010, 89(2): 236-243
[3]  Mohammad A H, Omar A A, John R, Sam K, Adnan A H, Khalid T, Abdurrahman S, Richelieu B. Effect of demineralization and heating rate on the pyrolysis kinetics of Jordanian oil shales[J]. Fuel Processing Technology, 2011, 92(9): 1805-1811
[4]  Jamal M N. The influence of grain size on the products yield and shale oil composition from the pyrolysis of Sultani oil shale[J]. Energy Conversion and Management, 2008, 49(11): 3278-3286
[5]  Anthony D B, Howard J B. Coal Devolation and Hydrogastification[J]. AICHE Journal, 1976, 22(4): 625-656
[6]  Hillier J L, Fletcher T H. Pyrolysis Kinetics of a Green River Oil Shale Using a Pressurized TGA[J]. Energy & Fuels, 2010, 25(1): 232-239
[7]  Wang Qing, Wang Haigang, Sun Baizhong. Interactions Between Oil Shale and its Semi-coke During Co-combustion[J]. Fuel, 2009, 88(8): 1520-1529
[8]  Niksa S. Predicting the devolatilization behavior of any coal from its ultimate analysis[J]. Combustion and Flame, 1995, 100(3): 384-394
[9]  Grant D M, Pugmire R J, Fletcher T H, Kerstein A R. Chemical model of coal devolatilization using percolation lattice statistics[J]. Energy Fuels, 1989, 3(2): 175-186
[10]  Solomon P R, Hamblen R M, Carangelo R M, Serio M A, Deshpande G V. General Model of Coal Devolatilization[J]. Energy and Fuels, 1988, 2(4): 405-422
[11]  Solomon P R, Hamblen D G, Yu Z Z, Serio M A. Network models of coal thermal decomposition[J]. Fuel, 1990, 69(6): 754-763
[12]  Serio M A, Charpenay S, Bassilakis R, Solomon P R. Measurements and modeling of lignin pyrolysis[J]. Biomass and Bioenergy, 1994, 7(1-6): 107-124
[13]  Jong W d, Nola D G, Venneker B H, Spliethoff H, Wójtowicz M A. TG-FTIR pyrilysis of coal and secondary biomass fuels: Determination of pyrolysis kinetics parameters for main species and NOx precursors[J]. Fuel, 2007, 86(15): 2367-2376
[14]  Hillier J L. Pyrolysis Kinetics and Chemical Structure Considerations of a Green River Oil Shale and its Derivatives[D]. Utah: Brigham Young University, 2011
[15]  Zhang Lili(张丽丽). The study of Tongchuan oil shale pyrolysis behavior[D]. Xi`an: Northwest University,2012
[16]  Li Shaohua(李少华), Bai Jingru(柏静儒), Sun Baizhong(孙佰仲), Hu Aijuan(胡爱娟), Wang Qing(王擎). Effect of heating rate on the pyrolysis characteristics of oil shales[J]. Chemical Engineering (China) (化学工程),2007,35(1): 64-67
[17]  Yan J W, Jiang X M, Han X X, Liu J G. A TG-FTIR investigation to the catalytic effect of mineral matrix in oil shale on the pyrolysis and combustion of kerogen[J]. Fuel, 2013, 104: 307-317
[18]  Wang Hui(王辉), Jiang Xiuming(姜秀民), Yuan Dequan(袁德权), Wan Peng(万鹏). Pyrolysis of coal water slurry volatile matter by using FG-DVCmodel[J]. Journal of Chemical Industry and Engineering(China)(化工学报), 2006, 57(10): 2428-2432
[19]  Yan J W, Jiang X M, Han X X, Liu J G. A TG-FTIR investigation to the catalytic effect of mineral matrix in oil shale on the pyrolysis and combustion of kerogen[J]. Fuel, 2013, 104: 307-317
[20]  Xie Fangfang(谢芳芳), Wang Ze(王泽), Song Wenli(宋文立), Lin Weigang(林伟刚). FTIR Analysis of Oil Shales from Huadian Jilin and Their Pyrolysis[J]. Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2011, 31(1): 91-94
[21]  Cui Zhigang(崔志刚). N2O Formation Mechanism Research of Oil Shale and Shale Char in Fluidized Bed Combustion [D]. Shanghai: Shanghai Jiao Tong University, 2010
[22]  Sun Shaozeng(孙绍增), Zeng Guang(增光), Wei Lai(魏来), Zhao Zhiqiang(赵志强), Qian Juan(钱娟). Quantitative analysis and study on pyrolysis component of typical anthracite[J]. Fuel & Chemical Processes(燃料与化工), 2011, 42(4): 1-4
[23]  Campbell J H, Gallegos G, Gregg M. Gas evolution during oil shale pyrolysis. 2. Kinetic and stoichiometric analysis[J]. Fuel, 1980, 59(10): 727-732
[24]  Huss E B, Burnham A K. Gas evolution pyrolysis of various Colorado oil shales[J]. Fuel, 1982, 61(12): 1188-1196
[25]  Suuberg E M, Sherman J, Lilly W D. Product evolution during rapid pyrolysis of Green River Formation oil shale[J]. Fuel, 1987, 66(9): 1176-1184
[26]  Solomon P R, Serio M A, Suuberg E M. Coal pyrolysis: experiments, kinetic rates and mechanisms[J]. Progress in Energy and Combustion Science, 1992, 18(2): 133-220
[27]  Zhang Y Z, Xu X D, Zuo Y. Experiments and modelling of coal pyrolysis under fluidized bed conditions[J]. Journal of Thermal Science, 1999, 8(3): 202-206
[28]  Solomon P R, Colket M B. Coal Devolatilization[J]. Symposium (International) on Combustion, 1979, 17(1): 131-143

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133