Liu, C., Xia, Z., and Czernuszka, J.T., Design and Development of Three-Dimensional Scaffolds for Tissue Engineering[J]. Chemical Engineering Research and Design, 2007. 85(7): 1051-1064.
[2]
Kramschuster, A., Cavitt, R., Ermer, D., Chen, Z., and Turng, L.-S., Quantitative study of shrinkage and warpage behavior for microcellular and conventional injection molding[J]. Polym. Eng. Sci., 2005. 45(10): 1408-1418.
[3]
Yuan, M., Turng, L.-S., and Caulfield, D.F., Crystallization and thermal behavior of microcellular injection-molded polyamide-6 nanocomposites[J]. Polym. Eng. Sci., 2006. 46(7): 904-918.
[4]
Cui, Z., Nelson, B., Peng, Y., Li, K., Pilla, S., Li, W.-J., Turng, L.-S., and Shen, C., Fabrication and characterization of injection molded poly (ε-caprolactone) and poly (ε-caprolactone)/hydroxyapatite scaffolds for tissue engineering[J]. Materials Science and Engineering: C, 2012. 32(6): 1674-1681.
[5]
Duarte, A.R.C., Mano, J.F., and Reis, R.L., Supercritical fluids in biomedical and tissue engineering applications: a review[J]. International Materials Reviews, 2009. 54(4): 214-222.
[6]
Wang, Y., (王亚明), Shen, C., (申长雨), and Zhao, W., (赵文彦), Progress of Chemical Foaming Agent for Plastics Abroad(国外塑料化学发泡剂发展动态)[J]. Chemical Materials for Construction(化学建材), 2000. 2: 21-22.
[7]
Cai, H., (蔡宏国), Chemical Blowing Agents in Plastics processing(塑料用化学发泡剂)[J]. Moden Plastics Processing and Applications (现代塑料加工应用), 2001. 13(4): 45-48.
[8]
Naguib, H.E., Park, C.B., Panzer, U., and Reichelt, N., Strategies for achieving ultra low-density polypropylene foams[J]. Polym. Eng. Sci., 2002. 42(7): 1481-1492.
[9]
Colton, J.S. and Suh, N.P., Nucleation of microcellular foam: Theory and practice[J]. Polym. Eng. Sci., 1987. 27(7): 500-503.
[10]
Stevens, M.M. and George, J.H., Exploring and Engineering the Cell Surface Interface[J]. Science, 2005. 310(5751): 1135-1138.
[11]
Yang, S.F., Leong, K.F., Du, Z.H., and Chua, C.K., The design of scaffolds for use in tissue engineering. Part 1. Traditional factors[J]. Tissue Eng., 2001. 7(6): 679-689.
[12]
Sachlos, E. and Czernuszka, J.T., Making tissue engineering scaffolds work: Review on the application of solid freeform fabrication technology to the production of tissue engineering scaffolds[J]. Eur. Cell. Mater., 2003. 5: 29-40.
[13]
Tateishi, T., Chen, G., and Ushida, T., Biodegradable porous scaffolds for tissue engineering[J]. Journal of Artificial Organs, 2002. 5(2): 77-83.
[14]
Loh, Q.L. and Choong, C., Three-dimensional Scaffolds for Tissue Engineering: Role of Porosity and Pore Size[J]. Tissue Eng Part B Rev, 2013.
[15]
Yang, S.F., Leong, K.F., Du, Z.H., and Chua, C.K., The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques[J]. Tissue Eng., 2002. 8(1): 1-11.
[16]
Rezwan, K., Chen, Q.Z., Blaker, J.J., and Boccaccini, A.R., Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering[J]. Biomaterials, 2006. 27(18): 3413-3431.
[17]
Kramschuster, A. and Turng, L.-S., An injection molding process for manufacturing highly porous and interconnected biodegradable polymer matrices for use as tissue engineering scaffolds[J]. J. Biomed. Mater. Res., Part B, 2009. 92(2): 366-376.
[18]
Hwang, S.-S., Hsu, P.P., Yeh, J.-M., Chang, K.-C., and Lai, Y.-Z., The mechanical/thermal properties of microcellular injection-molded poly-lactic-acid nanocomposites[J]. Polym. Compos., 2009. 30(11): 1625-1630.
[19]
Turng, L.-S. and Kharbas, H., Effect of process conditions on the weld-line strength and microstructure of microcellular injection molded parts[J]. Polym. Eng. Sci., 2003. 43(1): 157-168.
[20]
Lee, J.J. and Cha, S.W., Characteristics of the Skin Layers of Microcellular Injection Molded Parts[J]. Polymer-Plastics Technology and Engineering, 2006. 45(7): 871-877.
[21]
Lee, J., Turng, L.-S., and Kramschuster, A., The Microcellular Injection Molding of Low-Density Polyethylene (LDPE) Composites[J]. Polymer-Plastics Technology and Engineering, 2010. 49(13): 1339-1346.