Rogelj J, Meinshausen M, Knutti R. Global warming under old and new scenarios using IPCC climate sensitivity range estimates [J]. Nature Climate Change, 2012, 2(4): 248-253.
[2]
Intergovernmental Panel on Climate Change. Climate change 2014: Mitigation of Climate Change[R]. New York: IPCC, 2014.
[3]
Mofarahi M, Roohi P, Farshadpoor F. Study of CaO sorbent for CO2 capture from flue gases//9th International Conference on Chemical and Process Engineering. Chemical Engineering Transactions[C]. Bushehr: Persian Gulf University, 2009:403-408.
[4]
Wu S F, Zhu Y Q. Behavior of CaTiO3/nano-CaO as a CO2 reactive adsorbent [J]. Ind. Eng. Chem. Res., 2010, 49(6): 2701-2706.
[5]
Rodríguez N, Alonso M, Abanades J C. Average activity of CaO particles in a calcium looping system [J]. Chem. Eng. J., 2010, 156(2): 388-394.
[6]
Han C, Harrison D P. Simultaneous shift reaction and carbon dioxide separation for the direct production of hydrogen [J]. Chem. Eng. Sci., 1994, 49(24): 5875-5883.
[7]
Wu Sufang, Li Lianbao, Zhu Yanqing, Wang Xieqing. A micro-sphere catalyst complex with nano CaCO3 precursor for hydrogen production used in ReSER process [J]. Engineering Sciences, 2010, 8(1):22-26.
[8]
Abanades J C, Rubin E S, Anthony E J. Sorbent cost and performance in CO2 capture systems [J]. Ind. Eng. Chem. Res., 2004, 43(13): 3462-3466.
[9]
Lu D Y, Hughes R W, Anthony E J, Manovic V. Sintering and reactivity of caco3-based sorbents for in situ CO2 capture in fluidized beds under realistic calcination conditions [J]. J. Environ. Eng., 2009, 135(6): 404-410.
[10]
Manovic V, Charland J, Blamey J, Fennell P S, Lu D Y, Anthony E J. Influence of calcination conditions on carrying capacity of CaO-based sorbent in CO2 looping cycles [J]. Fuel, 2009, 88(10): 1893-1900.
[11]
Alvarez D, Pena M, Borrego A G. Behavior of different calcium-based sorbents in a calcination/carbonation cycle for CO2 capture [J]. Energy Fuels, 2007, 21(3): 1534-1542.
[12]
Lu H, Reddy E P, Smirniotis P G. Calcium oxide based sorbents for capture of carbon dioxide at high temperatures [J]. Ind. Eng. Chem. Res., 2006, 45(11): 3944-3949.
[13]
Florin N H, Harris A T. Enhanced hydrogen production from biomass with in situ carbon dioxide capture using calcium oxide sorbents [J]. Chem. Eng. Sci., 2008, 63(2): 287-316.
[14]
Su Mianzeng(苏勉曾).Solid Chemistry Introduction(固体化学导论)[M]. Beijing: Beijing University Press, 1986.
[15]
Lai Weipeng (来蔚鹏), Xue Yongqiang (薛永强), Lian Peng (廉鹏), Ge Zhongxue (葛忠学), Wang Bozhou (王伯周), Zhang Zhizhong (张志忠). Effect of particle size on properties of chemical reaction thermodynamics of nanosystems [J]. Journal of Physical Chemistry (物理化学学报), 2007, 23(4): 508-512.
[16]
Cui Z, Xue Y, Xiao L, Wang Tingting. Effect of particle size on activation energy for thermal decomposition of nano-CaCO3 [J]. J. Comput. Theor. Nanos., 2013, 10(3): 569-572.
[17]
Wang S, Cui Z, Xia X, Xue Y. Size-dependent decomposition temperature of nanoparticles: a theoretical and experimental study [J]. Phys. B: Condens. Matter., 2014, 454: 175-178.
[18]
Yue Linhai (岳林海), Shui Miao (水淼), Xu Zhude(徐铸德). Decomposition kinetics of nano-particle calcite [J]. Chinese Journal of Inorganic Chemistry (无机化学学报), 1999, 15(2):225-228.
[19]
Yue Linhai (岳林海), Shui Miao (水淼), Xu Zhude(徐铸德). The crystal structure of ultra-fine CaCO3 and its thermal decomposition [J]. Journal of Chemical Engineering of Chinese Universities (高校化学工程学报), 2000, 21(10): 1555-1559.
[20]
Wu S F, Li Q H, Kim J N, Yi, Kwang B. Properties of a nano CaO/Al2O3 CO2 sorbent[J]. Ind. Eng. Chem. Res., 2008, 47(1): 180-184.
[21]
Liu R, Chen J, Guo F, Yun Jimmy, Shen Z. Kinetics and mechanism of decomposition of nano-sized calcium carbonate under non-isothermal condition [J]. Chin. J. Chem. Eng., 2003, 11(3): 302-306.
[22]
Salvador A R, Calvo E G, Aparicio C B. Effects of sample weight, particle size, purge gas and crystalline structure on the observed kinetic parameters of calcium carbonate decomposition [J]. Thermochim. Acta., 1989, 143: 339-345.
[23]
Borgwardt R H. Calcination kinetics and surface area of dispersed limestone particles [J]. AIChE J., 1985, 31(1): 103-111.
[24]
Criado J M, Ortega A. A study of the influence of particle size on the thermal decomposition of CaCO3 by means of constant rate thermal analysis [J]. Thermochim. Acta., 1992, 195: 163-167.
[25]
Zhong Zhaoping (仲兆平), Marnie Telfer, Zhang Mingyao (章名耀), Li Daji (李大骥), Xu Yuenian (徐跃年), Jin Baosheng (金保升), Lan Jixiang (兰计香), Zhang Dongke (张东柯). Experimental study on pyrolysis of caroline linestone [J]. Journal of Combustion Science and Technology (燃烧科学与技术), 2001, 7(2): 110-114.
[26]
Yan C, Grace J R, Lim C J. Effects of rapid calcination on properties of calcium-based sorbents [J]. Fuel Process. Technol., 2010, 91(11): 1678-1686.
[27]
Campbell F R, Hills A, Paulin A. Transport properties of porous lime and their influence on the decomposition of porous compacts of calcium carbonate [J]. Chem. Eng. Sci., 1970, 25(6): 929-942.
[28]
Huang J, Daugherty K E. Lithium carbonate enhancement of the calcination of calcium carbonate: proposed extended-shell model [J]. Thermochim. Acta., 1987, 118: 135-141.
[29]
Huang J, Daugherty K E. Inhibition of the calcination of calcium carbonate [J]. Thermochim. Acta., 1988, 130: 173-176.
[30]
Yu Zhaonan(余兆南). The experimental study of CaCO3 decomposition [J]. Journal of Thermal Energy and Power Engineering (热能动力工程), 1997, 12(4): 278-280.
[31]
Hou Guihua (侯贵华), Shen Xiaodong (沈晓冬), Xu Zhongzi (许仲梓). Effect of copper oxide on decomposition kinetics for calcium carbonate [J]. Journal of the Chinese Ceramic Society (硅酸盐学报), 2005, 33(1): 109-114.
[32]
Braileanu A, Zaharescu M, Cri?an D, F?tu D, Segal E, Danciulescu C. Kinetics of the decomposition of calcium carbonate in the presence of Bi2O3[J]. J. Therm. Anal., 1996, 47(2): 569-575.
[33]
Calvo E G, Arranz M A, Leton P. Effects of impurities in the kinetics of calcite decomposition [J]. Thermochim. Acta., 1990, 170: 7-11.
[34]
Zhang Huizhu (张惠珠), Jin Dalai (金达莱), Yue Linhai (岳林海). Study on the non-isothermal decomposition kinetics of AlOOH coated calcium carbonate [J]. Journal of Zhejiang University:Science Edition (浙江大学学报:理学版), 2008, (4): 16.
[35]
Shi Qi (师琦), Wu Sufang (吴素芳). Properties of SiO2 coated nano SiO2/CaCO3 sorbents by precipitation method [J]. CIESC Journal (化工学报), 2009, 60(2): 507-513.
[36]
Yue Linhai (岳林海), Cai Juxiang (蔡菊香), Hua Yimiao (华益苗). Mechanism and structure of SiO2-coated CaCO3 superfine particles [J]. Journal of Zhejiang University: Science Edition(浙江大学学报:理学版), 2002, 29(1): 67-72.
[37]
Wang Chengyu (王成毓). Biomimetic synthesis and character of functional nano-CaCO3[D]. Changchun: Jilin University, 2007.
[38]
Sanders J P, Gallagher P K. Kinetic analyses using simultaneous TG/DSC measurements (Ⅰ): Decomposition of calcium carbonate in argon [J]. Thermochim Acta., 2002, 388(1/2): 115-128.
[39]
Galan I, Glasser F P, Andrade C. Calcium carbonate decomposition [J]. J. Therm. Anal Calorim., 2013, 111(2): 1197-1202.
[40]
Avila I, Crnkovic P M, Milioli F E, Luo Kai H. Thermal decomposition kinetics of Brazilian limestones: effect of CO2 partial pressure [J]. Environ. Technol.. 2012, 33(10): 1175-1182.
[41]
Yin J, Kang X, Qin C, Feng B, Veeraragavan A, Saulov D, et al. Modeling of CaCO3 decomposition under CO2/H2O atmosphere in calcium looping processes [J]. Fuel Process. Technol., 2014, 125: 125-138.
[42]
L'vov B V. Kinetic parameters of CaCO3 decomposition in vacuum, air and CO2 calculated theoretically by means of the thermochemical approach[J]. React. Kinet. Mech. Cat., 2015, 114(1): 31-40.
[43]
Li Zhenshan (李振山), Fang Fan (房凡), Cai Ningsheng (蔡宁生). Simulation of CaCO3 calcination under high CO2 concentration [J]. Journal of Engineering for Thermal Energy and Power (热能动力工程), 2007, (6): 642-646.
[44]
Wang Y, Thomson W J. The effects of steam and carbon dioxide on calcite decomposition using dynamic X-ray diffraction [J]. Chem. Eng. Sci., 1995, 50(9): 1373-1382.
[45]
L'vov B V. Mechanism of thermal decomposition of alkaline-earth carbonates [J]. Thermochim Acta., 1997, 303(2): 161-170.
[46]
Broda M, Pacciani R, Müller C R. CO2 Capture via Cyclic Calcination and Carbonation Reactions//Porous Materials for Carbon Dioxide Capture [M]. Springer, 2014: 181-222.
[47]
Stanmore B R, Gilot P. Review—calcination and carbonation of limestone during thermal cycling for CO2 sequestration [J]. Fuel Process. Technol., 2005, 86(16): 1707-1743.
[48]
Feng Yun (冯云), Chen Yaxin (陈延信). Development of research on calcium carbonate for decomposed kinetics [J]. Bulletin of the Chinese Ceramic Society (硅酸盐通报), 2006, (3): 140-145.
[49]
Martinez I, Grasa G, Murillo R, Arias B, Abanades J C. Kinetics of calcination of partially carbonated particles in a Ca-looping system for CO2 capture [J]. Energy Fuels, 2012, 26(2): 1432-1440.
[50]
Cremer E, Nitsch W. The function of CO2 pressure on CaCO3 decomposition rate [J]. Z. Elektrochem., 1962, 66(8/9): 697-702.
[51]
Sharp J H, Wentworth S A. Kinetic analysis of thermogravimetric data [J]. Analytical Chemistry, 1969, 41(14): 2060-2062.
[52]
Xie Jianyun (谢建云), Fu Weibiao (傅维标). Uniform mathematical model for limestone calcination [J]. Journal of Combustion Science and Technology (燃烧科学与技术), 2002, 8(3): 270-274.
[53]
Ning Jingtao (宁静涛), Zhong Beijing (钟北京), Fu Weibiao (傅维标). Study on the calcination of fine limestone powder at high temperature [J]. Journal of Combustion Science and Technology (燃烧科学与技术), 2003, 9(3): 205-208.
[54]
Ar I, Do?u G. Calcination kinetics of high purity limestones [J]. Chem. Eng. Sci., 2001, 83(2): 131-137.
[55]
Milne C R, Silcox G D, Pershing D W, Kirchgessner, David A. Calcination and sintering models for application to high-temperature, short-time sulfation of calcium-based sorbents [J]. Ind. Eng. Chem. Res., 1990, 29(2): 139-149.
[56]
Shi Qi (师琦), Wu Sufang (吴素芳), Jiang Mingzhe (蒋明哲), Li Qinghui (李清辉). Reactive sorption-decomposition kinetics of nano Ca-based CO2 sorbents [J]. CIESC Journal (化工学报), 2009, 60(3): 641-648.
[57]
Dennis J S, Hayhurst A N. The effect of CO2 on the kinetics and extent of calcination of limestone and dolomite particles in fluidised beds [J]. Chem. Eng. Sci., 1987, 42(10): 2361-2372.