全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2015 

化学链重整直接制氢技术进展

DOI: 10.11949/j.issn.0438-1157.20150810, PP. 2854-2862

Keywords: 制氢,合成气,二氧化碳捕集,化学链,重整

Full-Text   Cite this paper   Add to My Lib

Abstract:

化学链重整直接制氢技术使用固态金属氧化物作为氧载体代替传统重整过程中所需的水蒸气或纯氧,将燃料直接转化为高纯度的合成气或者二氧化碳和水,被还原的金属氧化物则可以与水蒸气再生并直接产生氢气,实现了氢气的近零能耗原位分离,是一种绿色高效的新型制氢过程。根据产物和供热方式的不同,可以将化学链重整直接制氢工艺分为双床系统和三床系统两类,并对各系统中氧载体与反应器的设计与选择进行了分析。通过Elingham图对不同氧载体的氧化还原能力进行比较,选取适于直接制氢的金属氧化物,并讨论了氧载体材料研发的最新进展。化学链制氢反应器设计应根据不同原料和产品的特点,选择合适的气-固接触方式,以强化化学链重整直接制氢效率。

References

[1]  Sim A, Cant N W, Trimm D L. Ceria-zirconia stabilised tungsten oxides for the production of hydrogen by the methane-water redox cycle [J]. Int. J. Hydrogen Energy, 2010, 35: 8953-8961.
[2]  Svoboda K, Slowinski G, Rogut J, Baxter D. Thermodynamic possibilities and constraints for pure hydrogen production by iron based chemical looping process at lower temperatures [J]. Energy Convers. Manage, 2007, 48 (12): 3063.
[3]  Steinfeld A, Kuhn P. High-temperature solar thermochemistry: production of iron and synthesis gas by Fe3O4-reduction with methane [J]. Energy, 1993, 18: 239-249.
[4]  Halmann M, Frei A, Steinfeld A. Thermo-neutral production of metals and hydrogen or methanol by the combined reduction of the oxides of zinc or iron with partial oxidation of hydrocarbons [J]. Energy, 2002, 27: 1069-1084.
[5]  Luo S, Zeng L, Xu D, Kathe M, Chung E, Deshpande N, Qin L, Majumder A, Hsieh T L, Tong A, Sun Z, Fan L S. Shale gas-to-syngas chemical looping process for stable shale gas conversion to high purity syngas with a H2: CO ratio of 2: 1 [J]. Energy & Environmental Science, 2014, 7 (12): 4104-4117.
[6]  Xiang W, Chen Y. Hydrogen and electricity from coal with carbon dioxide separation using chemical looping reactors [J]. Energy & Fuels, 2007, 21 (4): 2272.
[7]  Chiesa P, Lozza G, Malandrino A, Romano M, Piccolo V. Three-reactors chemical looping process for hydrogen production [J]. International Journal of Hydrogen Energy, 2008, 33 (9): 2233-2245.
[8]  Li F, Zeng L, Fan L S. Techno-economic analysis of coal-based hydrogen and electricity cogeneration processes with CO2 capture [J]. Industrial & Engineering Chemistry Research, 2010, 49 (21): 11018-11028.
[9]  Li F, Zeng L, Fan L S. Biomass direct chemical looping process: process simulation [J]. Fuel, 2010, 89(12): 3773-3784.
[10]  Dai X, Li R, Yu C, Hao Z. Unsteady-state direct partial oxidation of methane to synthesis gas in a fixed-bed reactor using AFeO3 (A= La, Nd, Eu) perovskite-type oxides as oxygen storage [J]. J. Phys. Chem. B, 2006, 110: 22525-22531.
[11]  Mihai O, Chen D, Holmen A. Catalytic consequence of oxygen of lanthanum ferrite Perovskite in chemical looping reforming of methane [J]. Ind. Eng. Chem. Res., 2011, 50: 2613-2621.
[12]  Nalbandian L, Evdou A, Zaspalis V. La1-xSrxMyFe1-yO3-z perovskites as oxygen-carrier materials for chemical-looping reforming [J]. Int. J. Hydrogen Energy, 2011, 36: 6657-6670.
[13]  He F, Li F. Perovskite promoted iron oxide for hybrid watersplitting and syngas generation with exceptional conversion [J]. Energy & Environmental Science, 2015, 8: 535-539.
[14]  Ryu H J, Jin G T, Bae D H, Yi C K. Continuous operation of a 50 kWth chemical-looping combustor: long-term operation with Ni-and Co-based oxygen carrier particles[OL]. http: //lib.kier.re. kr/balpyo/ clean5/13.pdf.
[15]  Lyngfelt A, Thunman H. Construction and 100h of operational experience of a 10-kW chemical looping combustor [J]. Carbon Dioxide Capture for Storage in Deep Geologic Formations, 2005: 625-645.
[16]  de Diego L F, Garcia-Labiano F, Gayan P, Celaya J, Palacios J M, Adanez J. Operation of a 10 kWth chemical-looping combustor during 200 h with a CuO-Al2O3 oxygen carrier [J]. Fuel, 2007, 86 (7-8): 1036-1045.
[17]  Shen L, Wu J, Xiao J, Song Q, Xiao R. Chemical-looping combustion of biomass in a 10 kWth reactor with iron oxide as an oxygen carrier [J]. Energy & Fuels, 2009, 23: 2498-2505.
[18]  IGT. Development of the Steam-Iron Process for Hydrogen Production[M]. Washington: Dept of Energy, 1977.
[19]  Li F, Zeng L, Velazquez-Vargas L G, Yoscovits Z, Fan L S. Syngas chemical looping gasification process: Bench-scale studies and reactor simulations [J]. AIChE Journal, 2009, 56(8): 2186-2199.
[20]  Thon A, Kramp M, Hartge E-U. Operational experience with a system of coupled fluidized beds for chemical looping combustion of solid fuels using ilmenite as oxygen carrier [J]. Applied Energy, 2014, 2: 309-317.
[21]  Wang D, Fan L S. Bulk coarse particle arching phenomena in a moving bed with fine particle presence [J]. AIChE Journal, 2014, 60 (3): 881-892.
[22]  Gong J, Luque R. Catalysis for production of renewable energy [J]. Chemical Society Reviews, 2014, 43 (22): 7466-7468.
[23]  Fan L S, Zeng L, Wang W, Luo S. Chemical looping processes for CO2 capture and carbonaceous fuel conversion — prospect and opportunity [J]. Energy & Environmental Science, 2012, 5 (6): 7254-7280.
[24]  Thursfield A, Murugan A, Franca R, Metcalfe I S. Chemical looping and oxygen permeable ceramic membranes for hydrogen production — a review [J]. Energy & Environmental Science, 2012, 5 (6): 7421-7459.
[25]  Xu Dikai(许迪恺), Tong Andrew, Zeng Liang(曾亮), Luo Siwei(罗四维), Fan Liangshi(范良士). Development on iron-based moving bed chemical looping process [J]. CIESC Journal(化工学报), 2014, 65 (7): 2410-2416.
[26]  Messerschmitt A. Process for producing hydrogen[P]: US, 971206. 1910.
[27]  Lane H. Process for the production of hydrogen[P]: US, 1078686. 1913.
[28]  Adanez J, Abad A, Garcia-Labiano F, Gayan P, de Diego L F. Progress in chemical-looping combustion and reforming technologies [J]. Progress in Energy and Combustion Science, 2012, 38 (2): 215-282.
[29]  Fan L S, Zeng L, Luo S. Chemical-looping technology platform [J]. AIChE Journal, 2015, 61 (1): 2-22.
[30]  Wang Zhangmao(王樟茂), Chen Wei(陈伟), Chen Gantang(陈甘棠), Zhang Bin(张斌), Yan Huiqing(严慧卿). Characteristics of fine power fluidization [J]. Chemical Reaction Engineering and Technology(化学反应工程与工艺), 1988, 4(1): 89-92
[31]  Yang Yongrong(阳永荣), Rong Shunxi(戎顺熙), Chen Gantang(陈甘棠), Chen Bochuan(陈伯川). Flow pattern and transition in turbulent fluidized bed [J]. Chemical Reaction Engineering and Technology(化学反应工程与工艺), 1990, 6(2): 9-16
[32]  Niu Xueyi(牛学义), Wang Zhangmao(王樟茂), Rong Shunxi(戎顺熙), Chen Gantang(陈甘棠). Gas-solid hydrodymanics with varying gas velocities [J]. Chemical Reaction Engineering and Technology(化学反应工程与工艺), 1993, 9(4): 465-470.
[33]  Li Xi(李希), Chen Jianfeng(陈建峰), Chen Gantang(陈甘棠). Research progress in microscale mixing [J]. Chemical Reaction Engineering and Technology(化学反应工程与工艺), 1994, 10 (2): 103-112.
[34]  Ryden M, Lyngfelt A. Using steam reforming to produce hydrogen with carbon dioxide capture by chemical-looping combustion [J]. International Journal of Hydrogen Energy, 2006, 31 (10): 1271-1283.
[35]  Wang Hua(王华), Zhu Xing(祝星). Chemical Looping Steam Reofrming for Producing Hydrogen and Syngas(化学链蒸汽重整制氢与合成气技术)[M]. Beijing: Science Press,2012.
[36]  Otsuka K, Wang Y, Sunada E, Yamanaka I. Direct partial oxidation of methane to synthesis gas by cerium oxide [J]. Journal of Catalysis, 1998, 175 (2): 152-160.
[37]  Gupta A, Hegde M S, Priolkar K R, Waghmare U V, Sarode P R, Emura S. Structural investigation of activated lattice oxygen in Ce1-xSnxO2 and Ce1-x-ySnxPdyO2-d by EXAFS and DFT calculation [J]. Chemistry of Materials, 2009, 21 (24): 5836-5847.
[38]  Zhu X, Wang H, Wei Y. Hydrogen and syngas production from two-step steam reforming of methane using CeO2 as oxygen carrier [J]. Journal of Natural Gas Chemistry, 2011, 20 (3): 281-286.
[39]  Zhu X, Wang H, Wei Y. Reaction characteristics of chemical-looping steam methane reforming over a Ce-ZrO2 solid solution oxygen carrier [J]. Mendeleev Communications, 2011, 21 (4): 221-223.
[40]  Li R, Yu C, Dai X, Shen S. Partial oxidation of methane to synthesis gas using lattice oxygen instead of molecular oxygen [J]. Chinese J. Catal., 2002, 10: 56-69.
[41]  Jeong H, Kwak J, Han G, Yoon K. Stepwise production of syngas and hydrogen through methane reforming and water splitting by using a cerium oxide redox system [J]. Int. J. Hydrogen Energy, 2011, 36(23): 15221-15230.
[42]  Li K, Wang H, Wei Y. Selective oxidation of carbon using iron-modified cerium oxide [J]. Journal of Physical Chemistry C, 2009, 113: 15288-15297.
[43]  Kodama T, Ohtake H, Matsumoto S, Aoki A, Shimizu T, Kitayama Y. Thermochemical methane reforming using a reactive WO3/W redox system [J]. Energy, 2000, 25: 411-425.
[44]  Kodama T, Shimizu T, Satoh T, Shimizu K. Stepwise production of CO-rich syngas and hydrogen via methane reforming by a WO3-redox catalyst [J]. Energy, 2003, 28: 1055-1068.
[45]  Sherif S A, Goswami D Y, Stefanakos E K, Steinfeld A. Handbook of Hydrogen Energy [M]. Boca Raton, USA: CRC Press, 2014.
[46]  Li F, Fan L S. Clean coal conversion processes — progress and challenges [J]. Energy & Environmental Science, 2008, 1(2): 248-267.
[47]  Chen Bo(陈博), Liao Zuwei(廖祖维), Wang Jingdai(王靖岱), Yu Huanjun(俞欢军), Yang Yongrong(阳永荣). Exergy analysis of hydrogen production by steam reforming of hydrocarbons and its carbon emission evaluation [J]. Acta Petrolei Sinica: Petroleum Processing Section (石油学报:石油加工), 2012, 28 (4): 662-669.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133