Cipolla C, Lolon E, Erdle J, Rubin B. Reservoir modeling in shale-gas reservoirs [J]. SPE Reservoir Eval. Eng., 2010, 13(4): 638-653.
[2]
Hao F, Zou H, Lu Y. Mechanisms of shale gas storage: implications for shale gas exploration in China [J]. AAPG Bull., 2013, 97(8): 1325-1346.
[3]
Zou Caineng(邹才能), Dong Dazhong(董大忠), Wang Shejiao(王社教), Li Jianzhong(李建忠), Li Xinjing(李新景), Wang Yuman(王玉满), Li Denghua(李登华), Cheng Keming(程克明). China shale gas formation mechanism, the geological characteristics and resource potential [J]. Petroleum Exploration and Development (石油勘探与开发), 2010, 37(6): 641-653.
[4]
Ross D J, Bustin R M. Characterizing the shale gas resource potential of Devonian-Mississippian strata in the Western Canada sedimentary basin: application of an integrated formation evaluation [J]. AAPG Bull., 2008, 92(1): 87-125.
[5]
Kinnaman T C. The economic impact of shale gas extraction: a review of existing studies [J]. Ecol. Econ., 2011, 70(7): 1243-1249.
[6]
Energy Information Administration. Annual energy outlook 2011[EB/OL]. http://www.eia.gov/forecasts/aeo/pdf/0383 (2011).pdf.
[7]
US Energy Information Administration. Shale gas production[EB/OL]. http://www.eia.gov/dnav/ng/ng_prod_shalegas_s1_a.htm.
[8]
Rahm D. Regulating hydraulic fracturing in shale gas plays: the case of Texas [J]. Energy Policy, 2011, 39(5): 2974-2981.
[9]
Ross D J K, Bustin R M. Shale gas potential of the Lower Jurassic Gordondale Member, northeastern British Columbia, Canada [J]. B. Can. Petrol. Geol., 2007, 55(1): 51-75.
[10]
Zhang Jinchuan(张金川), Xu Bo(徐波), Nie Haikuan(聂海宽), Deng Feiyong(邓飞涌). Two important areas of China's natural gas exploration [J]. Natural Gas Industry(天然气工业), 2007, 27(11): 1-6.
[11]
Zhang Jinchuan(张金川), Xue Hui(薛会), Bian Changrong(卞昌蓉), Wang Yanfang(王艳芳), Tang Xuan(唐玄). Discussion on China's unconventional gas exploration [J]. Natural Gas Industry(天然气工业), 2006, 26(12): 53-56.
[12]
Loucks R G, Reed R M, Ruppel S C, Jarvie D M. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale [J]. J. Sediment. Res., 2009, 79(12): 848-861.
[13]
Zou Caineng(邹才能), Dong Dazhong(董大忠), Yang Ye(杨桦), Wang Yuman(王玉满), Huang Jinliang(黄金亮), Wang Shufang(王淑芳), Fu Chengxin(付成信). China shale gas formation conditions and exploration practice [J]. Natural Gas Industry(天然气工业), 2011, 31(12): 26-39, 125.
[14]
Best M, Katsube T. Shale permeability and its significance in hydrocarbon exploration [J]. The Leading Edge, 1995, 14(3): 165-170.
[15]
Hildenbrand A, Schl?mer S, Krooss B. Gas breakthrough experiments on fine-grained sedimentary rocks [J]. Geofluids, 2002, 2(1): 3-23.
[16]
Zhang Xuefen(张雪芬), Lu Xiancai(陆现彩), Zhang Linye(张林晔), Liu Qing(刘庆). Shale gas occurrence form research and its significance in petroleum geology [J]. Advance in Earth Science (地球科学进展), 2010, 25(6): 597-604.
[17]
Ross D J, Bustin R M. Sediment geochemistry of the lower Jurassic Gordondale member, northeastern British Columbia [J]. B. Can. Petrol. Geol., 2006, 54(4): 337-365.
[18]
Hickey J J, Henk B. Lithofacies summary of the Mississippian Barnett Shale, Mitchell 2 TP Sims well, Wise County, Texas [J]. AAPG Bull., 2007, 91(4): 437-443.
[19]
Lu X C, Li F C, Watson A T. Adsorption measurements in Devonian shales [J]. Fuel, 1995, 74(4): 599-603.
[20]
Hill D G, Lombardi T E, Martin J P. Fractured shale gas potential in New York [J]. Northeast. Geol. Environ. Sci., 2004, 26(1/2): 57-78.
[21]
Hill D, Nelson C. Reservoir properties of the Upper Cretaceous Lewis Shale, a new natural gas play in the San Juan Basin [J]. AAPG Bull., 2000, 84(8): 1240.
[22]
Zhang Jinchuan(张金川), Jin Zhijun(金之钧), Yuan Mingsheng(袁明生). Shale gas reservoir forming mechanism and distribution [J]. Natural Gas Industry(天然气工业), 2004, 24(7): l.
[23]
Yu W, Sepehrnoori K. Simulation of gas desorption and geomechanics effects for unconventional gas reservoirs [J]. Fuel, 2014, 116: 455-464.
[24]
Hu Wenxuan(胡文瑄), Fu Qi(符琦), Lu Xiancai(陆现彩). Preliminary research of pressure and phase change on containing gas (oil) fluid system [J]. Geological Journal of China Universities(高校地质学报), 1996, (4): 99-106.
[25]
Li Xinjing(李新景), Hu Suyun(胡素云), Cheng Keming(程克明). North American fractured shale gas exploration and development of the enlightenment [J]. Petroleum Exploration and Development(石油勘探与开发), 2007, 34(4): 392-400.
[26]
Nie Haikuan(聂海宽), Zhang Jinchuan(张金川), Zhang Peixian(张培先), Song Xiaowei(宋晓薇). Barnett shale gas reservoir characteristics and enlightenment of Fort Worth basin [J]. Geological Science and Technology Information(地质科技情报), 2009, 28(2): 87-93.
[27]
Raut U, Famá M, Teolis B, Baragiola R. Characterization of porosity in vapor-deposited amorphous solid water from methane adsorption [J]. J. Chem. Phys., 2007, 127(20): 204713.
[28]
Chalmers G R, Bustin R M. Lower Cretaceous gas shales in northeastern British Columbia (Ⅰ): Geological controls on methane sorption capacity [J]. B. Can. Petrol. Geol., 2008, 56(1): 1-21.
[29]
Jarvie D M, Hill R J, Ruble T E, Pollastro R M. Unconventional shale-gas systems: the Mississippian Barnett shale of north-central Texas as one model for thermogenic shale-gas assessment [J]. AAPG Bulletin, 2007, 91(4): 475-499.
[30]
Shtepani E, Noll L A, Elrod L W, Jacobs P M. A new regression-based method for accurate measurement of coal and shale gas content [J]. SPE Reservoir Eval. Eng., 2010, 13(2): 359-364.
[31]
Lindgreen H, Drits V A, Sakharov B A, Salyn A L, Wrang P, Dainyak L G. Illite-smectite structural changes during metamorphism in black Cambrian Alum shales from the Baltic area [J]. Am. Mineral., 2000, 85(9): 1223-1238.
[32]
Javadpour F. Nanopores and apparent permeability of gas flow in Mudrocks (shales and siltstone) [J]. J. Can. Pet. Technol., 2009, 48(8): 16-21.
[33]
Bernard S, Horsfield B, Schulz H M, Wirth R. Multiscale study of gas shale properties and thermal evolution [J]. Geochim. Cosmochim. Acta, 2010, 74(12): A82-A82.
[34]
Warpinski N R, Du J, Zimmer U. Measurements of hydraulic-fracture-induced seismicity in gas shales [J]. SPE Prod. Oper., 2012, 27(3): 240-252.
[35]
Freeman C M, Moridis G J, Blasingame T A. A numerical study of microscale flow behavior in tight gas and shale gas reservoir systems [J]. Transp. Porous Media, 2011, 90(1): 253-268.
[36]
Fathi E, Akkutlu I Y. Lattice Boltzmann method for simulation of shale gas transport in kerogen [J]. SPE Journal, 2013, 18(1): 27-37.
[37]
Darabi H, Ettehad A, Javadpour F, Sepehrnoori K. Gas flow in ultra-tight shale strata [J]. Journal of Fluid Mechanics, 2012, 710(1): 641-658.
[38]
Bhatia S, Tran K, Nguyen T, Nicholson D. High-pressure adsorption capacity and structure of CO2 in carbon slit pores: theory and simulation [J]. Langmuir, 2004, 20(22): 9612-9620.
[39]
Cao D, Zhang X, Chen J, Yun J. Local diffusion coefficient of supercritical methane in activated carbon by molecular simulation [J]. Carbon, 2003, 41(13): 2686-2689.
[40]
Cao D P, Wu J Z. Self-diffusion of methane in single-walled carbon nanotubes at sub-and supercritical conditions [J]. Langmuir, 2004, 20(9): 3759-3765.
[41]
Cui X, Bustin R M, Dipple G. Selective transport of CO2, CH4, and N2 in coals: insights from modeling of experimental gas adsorption data [J]. Fuel, 2004, 83(3): 293-303.
[42]
Kurniawan Y, Bhatia S K, Rudolph V. Simulation of binary mixture adsorption of methane and CO2 at supercritical conditions in carbons [J]. AIChE Journal, 2006, 52(3): 957-967.
[43]
Wang W, Peng X, Cao D. Capture of trace sulfur gases from binary mixtures by single-walled carbon nanotube arrays: a molecular simulation study [J]. Environ. Sci. Technol., 2011, 45(11): 4832-4838.
[44]
Paikaray S, Banerjee S, Mukherji S. Surface characteristics of shales and implication on metal sorption [J]. Environmental Chemistry Letters, 2008, 6(2): 91-94.
[45]
White C M, Smith D H, Jones K L, Goodman A L, Jikich S A, LaCount R B, DuBose S B, Ozdemir E, Morsi B I, Schroeder K T. Sequestration of carbon dioxide in coal with enhanced coalbed methane recovery: a review [J]. Energy Fuels, 2005, 19(3): 659-724.
[46]
Liu Y, Wilcox J. CO2 adsorption on carbon models of organic constituents of gas shale and coal [J]. Environmental Science & Technology, 2011, 45(2): 809-814.
[47]
Tenney C, Lastoskie C. Molecular simulation of carbon dioxide adsorption in chemically and structurally heterogeneous porous carbons [J]. Environ. Prog., 2006, 25(4): 343-354.
[48]
Jorge M, Seaton N A. Predicting adsorption of water/organic mixtures using molecular simulation [J]. AIChE J., 2003, 49(8): 2059-2070.
[49]
Shevade A V, Jiang S, Gubbins K E. Adsorption of water-methanol mixtures in carbon and aluminosilicate pores: a molecular simulation study [J]. Molecular Physics, 1999, 97(10): 1139-1148.
[50]
Shevade A V, Jiang S, Gubbins K E. Molecular simulation study of water-methanol mixtures in activated carbon pores [J]. J. Chem. Phys., 2000, 113(16): 6933-6942.
[51]
Nicholson D, Gubbins K E. Separation of carbon dioxide-methane mixtures by adsorption: effects of geometry and energetics on selectivity [J]. J. Chem. Phys., 1996, 104(20): 8126-8134.
[52]
Liu Y Y, Wilcox J. Effects of surface heterogeneity on the adsorption of CO2 in microporous carbons [J]. Environ. Sci. Technol., 2012, 46(3): 1940-1947.
[53]
Liu Y Y, Wilcox J. Molecular simulation of CO2 adsorption in micro-and mesoporous carbons with surface heterogeneity [J]. Int. J. Coal Geol., 2012, 104: 83-95.
[54]
Zhai Z, Wang X, Jin X, Sun L, Li J, Cao D. Adsorption and diffusion of shale gas reservoirs in modeled clay minerals at different geological depths [J]. Energy & Fuels, 2014, 28(12): 7467-7473.