Berardi S, Drouet S, Francas L, Gimbert-Surinach C, Guttentag M, Richmond C, Stoll T, Llobet A. Molecular artificial photosynthesis [J]. Chemical Society Review, 2014, 43: 7501-7519.
[2]
Qiu K Y, Netravali A N. A review of fabrication and applications of bacterial cellulose based nanocomposites [J]. Polymer Review, 2014, 54: 598-626.
[3]
Assen N, Voll P, Peters M, Bardow A. Life cycle assessment of CO2 capture and utilization: a tutorial review [J]. Chemical Society Review, 2014, 43: 7982-7994.
[4]
Tachibana Y, Vayssieres L, Durrant J R. Artificial photosynthesis for solar water-splitting[J]. Nature Photonics, 2012, 6: 511-518.
[5]
Lee S H, Kim J H, Park C B. Coupling photocatalysis and redox biocatalysis toward biocatalyzed artificial photosynthesis [J]. Chemistry-A European Journal, 2013, 19: 4392-4406.
[6]
Lee H Y, Ryu J, Kim J H, Lee S H, Park C B. Biocatalyzed artificial photosynthesis by hydrogen-terminated silicon nanowires [J]. ChemSusChem, 2012, 5: 2129-2132.
[7]
Kalyanasundaram K, Graetzel M. Artificial photosynthesis: biomimetic approaches to solar energy conversion and storage [J]. Current Opinion in Biotechnolog, 2010, 21: 298-310.
[8]
Bryksin A V, Brown A C, Baksh M M, Finn M G, Barker T H. Learning from nature-novel synthetic biology approaches for biomaterial design [J]. Acta Biomaterials, 2014, 10: 1761-1769.
[9]
Pan Y X, Liu C J, Zhang S, Yu Y, Dong M. 2D oriented self-assembly of peptide induced by hydrated electrons [J]. Chemistry-A European Journal, 2012, 18: 14614-14617.
[10]
Zhao X, Pan F, Xu H, Yaseen M, Shan H, Hauser C A E, Zhang S, Lu J R. Molecular self-assembly and applications of designer peptide amphiphiles [J]. Chemical Society Review, 2010, 39: 3480-3498.
[11]
Gazit E. Self-assembled peptide nanostructures: the design of molecular building blocks and their technological utilization [J]. Chemical Society Review, 2007, 36: 1263-1269.
[12]
Whitesides G M, Grzybowski B. Self-assembly at all scales [J]. Science, 2002, 295: 2418-2421.
[13]
Yang Y, Khoe U, Wang X, Horii A, Yokoi H, Zhang S. Designer self-assembling peptide nanomaterials [J]. Nano Today, 2009, 4: 193-210.
[14]
Santoso S, Hwang W, Hartmanm H, Zhang S. Self-assembly of surfactant-like peptides with variable glycine tails to form nanotubes and nanovesicles [J]. Nano Letters, 2002, 2: 687-691.
[15]
Maltzahn G, Vauthey S, Santoso S, Zhang S. Positively charged surfactant-like peptides self-assemble into nanostructures [J]. Langmuir, 2003, 19: 4332-4337.
[16]
Ryu J, Park C B. Solid-phase growth of nanostructures from amorphous peptide thin film: effect of water activity and temperature [J]. Chemistry of Materials, 2008, 20: 4284-4290.
[17]
Reches M, Gazit E. Casting metal nanowires within discrete self-assembled peptide nanotubes [J]. Science, 2003, 300: 625-627.
[18]
Hendler B N, Sidelman N, Reches M, Gazit E, Rosenberg Y, Richter S. Formation of well-organized self-assembled films from peptide nanotubes [J]. Advanced Materials, 2007, 19: 1485-1488.
[19]
Cui H, Muraoka T, Cheetham A G, Stupp S I. Self-assembly of giant peptide nanobelts [J]. Nano Letters, 2009, 9: 945-951.
[20]
Wang W, Yang M, Wang Z, Yan J, Liu C J. Silver nanoparticle aggregates by room temperature electron reduction: preparation and characterization [J]. RSC Advances, 2014, 4: 63079-63084.
[21]
Yan X, Liu Y, Zhao B, Wang Y, Liu C J. Enhanced sulfur resistance of Ni/SiO2 catalyst for methanation via the plasma decomposition of nickel precursor [J]. Physical Chemistry Chemical Physics, 2013, 15: 12132-12138.
[22]
Liu C J, Ye J, Jiang J, Pan Y X. Progresses in the preparation of coke resistant Ni-based catalyst for steam and CO2 reforming of methane [J]. ChemCatChem, 2011, 3: 529-541.
[23]
Yu Y, Li Y, Pan Y X, Liu C J. Fabrication of palladium/graphene oxide composite by plasma reduction at room temperature [J]. Nanoscale Research Letters, 2012, 7: 234.
[24]
Yan J, Pan Y X, Cheetham A G, Lin Y A, Wang W, Cui H, Liu C J. One-step fabrication of self-assembled peptide thin films with highly dispersed noble metal nanoparticles [J]. Langmuir, 2013, 29: 16051-16057.
[25]
Zhang S, Holmes T, Lockshin C, Rich A. Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane [J]. Proceedings of the National Academy of Sciences, 1993, 90: 3334-3338.
[26]
Faraggi M, Tal Y. The reaction of the hydrated electron with amino acids, peptides, and proteins in aqueous solution (Ⅱ): Formation of radicals and electron transfer reactions [J]. Radiation Research, 1975, 62: 347-356.
[27]
Faraggi M, Bettelheim A. The reaction of the hydrated electron with amino acids, peptides, and proteins in aqueous solution. Tryptophyl peptides [J]. Radiation Research, 1977, 72: 81-88.
[28]
Prell J S, O'Brien J T. Electron capture by a hydrated gaseous peptide: effects of water on fragmentation and molecular survival [J]. Journal of the American Chemical Society, 2008, 130: 12680-12689.
[29]
Yang M, Wang Z, Wang W, Liu C J. Synthesis of AuPd alloyed nanoparticles via room-temperature electron reduction with argon glow discharge as electron source [J]. Nanoscale Research Letters, 2014, 9: 405.
[30]
Liu C J, Zhao Y, Li Y, Zhang D S, Chang Z, Bu X H. Perspectives on electron assisted reduction for the preparation of highly dispersed noble metal catalysts [J]. ACS Sustainable Chemistry & Engineering, 2014, 2: 3-13.
[31]
Li C, Bolisetty S, Mezzenga R. Hybrid nanocomposites of gold single-crystal platelets and amyloid fibrils with tunable fluorescence, conductivity, and sensing properties [J]. Advanced Materials, 2013, 25: 3694-3700.