Ding Y J, Han W J, Chai Q H, Yang S H, Shen W. Coal-based synthetic natural gas (SNG): a solution to China's energy security and CO2 reduction? [J]. Energy Policy, 2013, 55: 445-453.
[2]
Gao J J, Wang Y L, Ping Y, Hu D C, Xu G W, Gu F N, Su F B. A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas [J]. RSC Advances, 2012, 2: 2358-2368.
[3]
Liu Z H, Chu B Z, Zhai X L, Jin Y, Cheng Y. Total methanation of syngas to synthetic natural gas over Ni catalyst in a micro-channel reactor [J]. Fuel, 2012, 95: 599-605.
[4]
Zhao Lijun(赵利军), Lin Hualin(蔺华林). Methanation history and catalytic mechanisms [J]. Shenhua Science and Technology (神华科技), 2010, (5): 80-84.
[5]
Liu B, Ji S F. Comparative study of fluidized-bed and fixed-bed reactor for syngas methanation over Ni-W/TiO2-SiO2 catalyst [J]. Journal of Energy Chemistry, 2013, 22: 740-746.
[6]
Kustov A L, Frey A M, Larsena K E, Johannessen T, N?rskov J K, Christensen C H. CO methanation over supported bimetallic Ni-Fe catalysts: from computational studies towards catalyst optimization [J]. Applied Catalysis A: General, 2007, 320: 98-104.
[7]
Liu Qihai(刘其海), Liao Liewen(廖列文), Liu Zili(刘自力), Dong Xinfa(董新法). Effect of ZrO2 crystalline phase on the performance of Ni-B/ZrO2 catalyst for the CO selective methanation [J]. Chinese Journal of Chemical Engineering (中国化学工程学报), 2011, 19: 434-438.
[8]
Zhang Cheng(张成). Research progress of methanation of carbon monoxide and carbon dioxide [J]. Chemical Industry and Engineering Progress (化工进展), 2007, 26: 1269-1273.
[9]
Zhang Y F, Zhang G J, Wang L P, Xu Y, Sun Y L. Selective methanation of carbon monoxide over Ru-based catalysts in H2-rich gases [J]. Journal of Industrial and Engineering Chemistry, 2012, 18: 1590-1597.
[10]
Qian Wei(钱卫), Huang Yuyi(黄于益), Zhang Qingwei(张庆伟), Du Minghua(杜铭华), Xie Qiang(解强). Development of synthetic technique of substitute natural gas (SNG) from coal [J]. Clean Coal Technology(洁净煤技术), 2011, 17: 27-32.
[11]
Moeller F W, Ros H, Britz B. Methanation of coal gas for SNG [J]. Hydrocarbon Processing, 1974, 53: 69-74
[12]
Lurgi/BASF. Advanced coal based SNG technology//3rd Coal to SNG conference[C]. Beijing, 2012: 09-10.
Li Yao(李瑶), Zheng Hua'an(郑化安), Zhang Shengjun(张生军), Fu Gang(付刚), Zhang Hexiang(赵鹤翔), Li Xueqiang(李学强), Liu Shuangtai(刘双泰). Status and development of synthetic natural gas (SNG) from coal [J]. Clean Coal Technology(洁净煤技术), 2013, (6): 62-67.
[15]
Zhu Yanyan(朱艳艳), Yuan Hui(袁慧), Guo Lei(郭雷), Hou Jianguo(侯建国), Gao Zhen(高振). Research progress in methanation technology at home and abroad [J]. Natural Gas Chemical Industry(天然气化工), 2014, 39: 77-82.
[16]
Li Anxue(李安学), Li Chunqi(李春启), Zuo Yubang(左玉帮), Liu Yongjian(刘永健). Analysis on the present situation and prospect of China's synthetic natural gas [J]. Coal Processing & Comprehensive Utilization(煤炭加工与综合利用), 2014, (10): 1-10.
[17]
Song Pengfei(宋鹏飞), Hou Jianguo(侯建国), Wang Xiulin(王秀林), Gao Zhen(高振), Zhang Yu(张瑜), Yao huichao(姚辉超), Mu Xiangyu(穆祥宇). Several design problems of multi-stage fixed bed adiabatic methanation reactor [J]. Modern Chemical Industry(现代化工), 2014, 34(10): 143-147.
[18]
Schlesinger M D, Demeter J J, Greyson M. Catalyst for producing methane from hydrogen and carbon monoxide [J]. Industrial & Engineering Chemistry, 1956, 48: 68-70.
[19]
Cobb Jr T J, Streeter R C. Evaluation of fluidized-bed methanation catalysts and reactor modeling [J]. Industrial & Engineering Chemistry Process Design and Development, 1979, 18: 672-679.
[20]
Cheng Y-H. Untersuchungen zur Gleichzeitigen methanisierung und konvertierung CO-reicher synthesegase in Gegenwart von Schwefelwasserstoff [D]. Germany: Universit?t Karlsruhe, 1983.
[21]
Alcorn W R, Cullo L A. Nickel-copper-molybdenum methanation catalyst [P]: US, 3962140. 1976-06-08.
[22]
Graboski M S, Donath E E. Combined shift and methanation reaction process for the gasification of carbonaceous materials [P]: US, 3904386. 1975-09-09.
[23]
Czekaj I, Loviat F, Raimondi F, Wambach J, Biollaz S, Wokaun A. Characterization of surface processes at the Ni-based catalyst during the methanation of biomass-derived synthesis gas: X-ray photoelectron spectroscopy (XPS) [J]. Applied Catalysis A: General, 2007, 329: 68-78.
[24]
Struis R P W J, Schildhauer T J, Czekaj I, Janousch M, Ludwig C, Biollaz S M A. Sulphur poisoning of Ni catalysts in the SNG production from biomass: a TPO/XPS/XAS study [J]. Applied Catalysis A: General, 2009, 362: 121-128.
[25]
Seemann M C, Schildhauer T J, Biollaz S M A, Stucki S, Wokaun A. The regenerative effect of catalyst fluidization under methanation conditions [J]. Applied Catalysis A: General, 2006, 313: 14-21.
[26]
Kopyscinski J, Schildhauer T J, Biollaz S M A. Production of synthetic natural gas (SNG) from coal and dry biomass—a technology review from 1950 to 2009 [J]. Fuel, 2010, 89: 1763-1783.
[27]
Frank M E, Sherwin M B, Blum D B, Mednick R L. Liquid phase methanation—shift PDU results and pilot plant status//Proceeding of eighth synthetic pipeline gas symposium [C]. Chicago: American Gas Association, 1976: 159-79.
[28]
Frank M E, Mednick R L. Liquid phase methanation pilot plant results//Proceeding of ninth synthetic pipeline gas symposium [C]. Chicago: American Gas Association; 1977: 185-191.
[29]
Meng Fanhui(孟凡会), Chang Huirong(常慧蓉), Li Zhong(李忠). Catalytic performance of Ni-Mn/Al2O3 catalyst for CO methanation in slurry-bed reactor [J]. CIESC Journal(化工学报), 2014, 65: 2997-3003.
[30]
Ji Keming(吉可明), Meng Fanhui(孟凡会), Gao Yuan(高源), Li Zhong(李忠). Solution combustion prepared Ni-based catalysts and their catalytic performance for slurry methanation [J]. Chinese Journal of Inorganic Chemistry(无机化学学报), 2015, 31: 267-274.
[31]
He Long(贺龙), Wang Yonggang(王永刚), Gong Weibo(公维博), Yang Fangfang(杨芳芳), Xu Deping(许德平), Zhang Haiyong(张海永). Research of the catalysts for methanation in slurry bed reactor [J]. Chemical Industry and Engineering Progress (化工进展), 2012, 31: 311-314.
[32]
Sabatier P, Senderens J B. New methane synthesis [J]. Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences, 1902, 134: 514-516.
[33]
Sehested J, Dahl S, Jacobsen J, Rostrup-Nielsen J R. Methanation of CO over nickel: mechanism and kinetics at high H2/CO ratios [J]. J. Phys. Chem. B, 2005, 109: 2432-2438.
[34]
Agnelli M, Kolb M, Mirodatos C. CO hydrogenation on a nickel catalyst (Ⅰ): Kinetics and modeling of a low-temperature sintering process [J]. Journal of Catalysis, 1994, 148: 9-21.
[35]
Keyser M J, Everson R C, Espinoza R L. Fischer-Tropsch kinetic studies with cobalt-manganese oxide catalysts [J]. Industrial & Engineering Chemistry Research, 2000, 39: 48-54.
[36]
Bligaard T, Norskov J K, Dahl S, Matthiesenb J, Christensena C H, Sehested J. The Br?nsted-Evans-Polanyi relation and the volcano curve in heterogeneous catalysis [J]. Journal of Catalysis, 2004, 224: 206-217.
[37]
Andersson M P, Bligaard T, Kustov A,. Larsen K E, Greeley J, Johannessen T, Christensen C H, N?rskov J K. Toward computational screening in heterogeneous catalysis: pareto-optimal methanation catalysts [J]. Journal of Catalysis, 2006, 239: 501-506.
[38]
Norskov J K, Bligaard T, Logadottir A, Bahn S, Hansen L B, Bollinger M, Bengaard H, Hammer B, Sljivancanin Z, Mavrikakis M, Xu Y, Dahl S, Jacobsen C J H. Universality in heterogeneous catalysis [J]. Journal of Catalysis, 2002, 209: 275-278.
[39]
Liu J, Shen W L, Cui D M, Yu J, Su F B, Xu G W. Syngas methanation for substitute natural gas over Ni-Mg/Al2O3 catalyst in fixed and fluidized bed reactors [J]. Catalysis Communications, 2013, 38: 35-39.
[40]
Masini F, Strebel C E, McCarthy D N, Nierhoff A U F, Kehres J, Fiordaliso E M, Nielsena J H, Chorkendorff I. Methanation on mass-selected Ru nanoparticles on a planar SiO2 model support: the importance of under-coordinated sites [J]. Journal of Catalysis, 2013, 308: 282-290.
[41]
Szailer T, Novák é, Oszkó A, Erd?helyi A. Effect of H2S on the hydrogenation of carbon dioxide over supported Rh catalysts [J]. Topics in Catalysis, 2007, 46: 79-86.
[42]
Liu J X, Su H Y, Li W X. Structure sensitivity of CO methanation on Co (0001), (10-12) and (11-20) surfaces: density functional theory calculations [J]. Catalysis Today, 2013, 215; 36-42.
[43]
Bartholomew C H. Mechanisms of catalyst deactivation [J]. Applied Catalysis A: General, 2001, 212: 17-60
[44]
Engbaek J, Lytken O, Nielsen J H, Chorkendorff I. CO dissociation on Ni: The effect of steps and of nickel carbonyl [J]. Surface Science, 2008, 602: 733-743
[45]
Polizzotti R S, Schwarz J A. Hydrogenation of CO to methane: kinetic studies on polycrystalline nickel foils [J]. Journal of Catalysis, 1982, 77(1): 1-15
[46]
Goodman D W, Kelley R D, Madey T E. Kinetics of the hydrogenation of CO over a single crystal nickel catalyst [J]. Journal of Catalysis, 1980, 63(1): 226-234
[47]
Moeller A D, Bartholomew C H. Deactivation by carbon of nickel, nickel-ruthenium, and nickel-molybdenum methanation catalysts [J]. Industrial & Engineering Chemistry Product Research and Development, 1982, 21: 390-397
[48]
Arkatova L A. The deposition of coke during carbon dioxide reforming of methane over intermetallides. Catalysis Today, 2010, 157: 170-176
[49]
Chen Y G, Tomishige K, Fujimoto K. Formation and characteristic properties of carbonaceous species on nickel-magnesia solid solution catalysts during CH4-CO2 reforming reaction [J]. Applied Catalysis A: General, 1997, 161: L11-L17
[50]
Li Dandan(李丹丹), Liu Zhihong(刘志红), Guo Fen(郭奋), Cheng Yi(程易). Preparation and performance of the nickel-based catalyst for the methanation [J]. Chemical Industry and Engineering Progress(化工进展), 2011, 30: 139-142
[51]
Li Yakun(李亚坤), Zhang Qiaofei(张巧飞), Chai Ruijuan(柴瑞娟), Lu Yong(路勇). Structured metal carrier catalyst: Performance, heat transfer enhancement and CFD simulation of CO methanation catalyst, 中国化学会第29届学术年会摘要集——第28分会:绿色化学, 北京, 2014
[52]
Kopyscinski J, Schildhauer T J, Biollaz S M A. Methanation in a fluidized bed reactor with high initial CO partialpressure: Part II—Modeling and sensitivity study, Chemical Engineering Science, 2011, 66: 1612-1621
[53]
Kopyscinski J, Schildhauer T J, Biollaz S M A. Methanation in a fluidized bed reactor with high initial CO partialpressure: Part I—Experimental investigation of hydrodynamics, mass transfer effects, and carbon deposition, Chemical Engineering Science, 2011, 66: 924-934
[54]
Liu J, Cui D M, Yu J, Su F B, Xu G W, Performance characteristics of fluidized bed syngas methanation over Ni-Mg/Al2O3 catalyst, Chinese Journal of Chemical Engineering, 2015, 23: 86-92
[55]
Liu J, Yu J, Su F B, Xu G W. Intercorrelation of structure and performance of Ni-Mg/Al2O3 catalysts prepared with different methods for syngas methanation [J]. Catalysis Science & Technology, 2014, 4: 472-481
[56]
Knowlton T, Karri S, Issangya A. Scale-up of fluidized-bed hydrodynamics [J]. Powder Technology, 2005, 150: 72-77
[57]
Li J, Zhou L, Li P C, Zhu Q S, Gao J J, Gu F N, Su F B. Enhanced fluidized bed methanation over a Ni/Al2O3 catalyst for production of synthetic natural gas, Chemical Engineering Journal, 2013, 219: 183-189
[58]
Geldart D. Types of Gas Fluidization. Powder Technology. 1973, 7: 285-292
[59]
Jin Y, Zhu J X, Wang Z W, Yu Z Q. Fluidization engineering principles [M]. Tsinghua University Press: China, 2001: 17
[60]
Li J, Zhou L, Zhu Q S, Li H Z, Enhanced methanation over aerogel NiCo/Al2O3 catalyst in a magnetic fluidized bed [J]. Industrial & Engineering Chemistry Research, 2013, 52: 6647-6654
[61]
Li P C, Li J, Zhu Q S, Cui L J, Li H Z. Effect of granulation on the activity and stability of a Co-Al2O3 aerogel catalyst in a fluidized-bed reactor for CH4-CO2 reforming [J]. RSC Advances, 2013, 3: 8939-8946-8939
[62]
Zong B N, Zhang X X, Qiao M H. Integration of methanation into the hydrogenation process of benzoic acid [J]. AIChE Journal, 2009, 55: 192-197
[63]
Pan Z Y, Dong M H, Meng X K, Zhang X X, Mu X H, Zong B N. Integration of magnetically stabilized bed and amorphous nickel alloy catalyst for CO methanation [J]. Chemical Engineering Science, 2007, 62: 2712-2717
[64]
Wu hao(吴浩), Pan Zhiyong(潘智勇), Zong Baoning(宗保宁), Shen Shikong(沈师孔). Study of low temperature methanation on nickel based amorphous alloy catalyst [J]. Chemical Industry and Engineering Progress (化工进展), 2005, 24: 299-302
[65]
Zong B N, Meng X K, Mu X H, Zhang X X., Magnetically stabilized bed reactors [J]. Chinese Journal of Catalysis, 2013, 34: 61-68
[66]
Zong B N. Applications of the Amorphous alloy catalyst and magnetically stabilized bed technology in petrochemical processes [J]. Chinese Journal of Catalysis(催化学报), 2008, 29: 873-877
[67]
Lee C B, Cho S H, Lee D W, Hwang K R, Park J S, Kim S H. Combination of preferential CO oxidation and methanation in hybrid MCR (micro-channel reactor) for CO clean-up [J]. Energy 2014, 78: 421-425
[68]
Men Y, Kolb G, Zapf R, Hessel V, L?we H. Selective methanation of carbon oxides in a microchannel reactor—Primary screening and impact of gas additives [J]. Catalysis Today, 2007, 125: 81-87
[69]
Gao Jun(高军), Dong Xinfa(董新法), Lin Weiming(林维明). Selective catalytic methanation of CO in hydrogen-rich gas with a metal foam micro reactor [J]. Journal of Fuel Chemistry and Technology(燃料化学学报), 2010, 38: 337-342
[70]
Dong Xinfa(董新法), Liu Wenyue(刘文跃), Gao Jun(高军), Lin Weiming(林维明). Purification of CO via selective methanation using microchannel reactor [J]. Journal of South China University of Technology (华南理工大学学报), 2009, 37: 44-49
[71]
Liu Wenyue(刘文跃), Dong Xinfa(董新法), Lin Weiming(林维明). Selective methanation of CO over Ni-Ru/ZrO2 catalyst in micro channel reactor [J]. Petrochemical Technology(石油化工), 2009, 38: 711-715
[72]
Ryi S K, Lee S W, Hwang K R, Park Jo S. Production of synthetic natural gas by means of a catalytic nickel membrane, Fuel, 2012, 94: 64-69
[73]
Li C M, Zhang S T, Zhang B S, Su D S, He S, Zhao Y F, Liu J, Wang F, Wei M, Evans D G, Duan X. Photohole-oxidation-assisted anchoring of ultra-small Ru clusters onto TiO2 with excellent catalytic activity and stability [J]. Journal of Materials Chemistry A, 2013, 1: 2461-2467
[74]
He S, Li C M, Chen H, Su D S, Zhang B S, Cao X Z, Wang B Y, Wei M, Evans D G, Duan X. A surface defect-promoted Ni nanocatalyst with simultaneously enhanced activity and stability [J]. Chemistry of Materials, 2013, 25: 1040-1046
[75]
Cheng M Y, Pan C J, Hwang B J. Highly-dispersed and thermally-stable NiO nanoparticles exclusively confined in SBA-15: Blockage-free nanochannels [J]. Journal of Materials Chemistry, 2009, 19: 5193-5200
[76]
Zou Haikui(邹海魁), Chu Guangwen(初广文), Zhao Hong(赵宏), Xiang Yang(向阳), Chen Jianfeng(陈建峰). Process intensification of high-gravity reactor for enviromental engineering: from fundamental to industrialization [J]. Scientia Sinica Chimica(中国科学:化学), 2014, 44: 1413-1422
[77]
Sang Le(桑乐), Luo Yong(罗勇), Chu Guangwen(初广文), Zou Haikui(邹海魁), Xiang Yang(向阳), Chen Jianfeng(陈建峰). Research progress of gas-liquid mass transfer enhancement in high gravity field [J]. CIESC Journal(化工学报), 2015, 66:14-31
[78]
Zhang Jianwen(张建文), Gao Dongxia(高冬霞), Li Yachao(李亚超), Chen Jianfeng(陈建峰). Research progress of multiphase transport in high gravity environment in rotating packed bed [J]. CIESC Journal(化工学报), 2013, 64:243-251
[79]
孙宏伟,陈建峰, Advances in fundamental study and application of chemical process intensification technology in China [J]. Chemical Industry and Engineering Progress (化工进展), 2011, 30: 1-15 ?
[80]
Bai X B, Wang S, Sun T J, Wang S D. Influence of operating conditions on carbon deposition over a Ni catalyst for the production of synthetic natural gas (SNG) from coal [J]. Catalysis Letters, 2014, 144: 2157-2166.
[81]
Lebarbier V M, Dagle R A, Kovarik L, Albrecht K O, Li X H, Li L Y, Taylor C E, Bao X H, Wang Y. Sorption-enhanced synthetic natural gas (SNG) production from syngas: a novel process combining CO methanation, water-gas shift, and CO2 capture [J]. Applied Catalysis B: Environmental, 2014, 144: 223-232.
[82]
Rezvani S, McIlveen-Wright D, Huang Y, Dave A, Mondol J D, Hewitt N. Comparative analysis of energy storage options in connection with coal fired integrated gasification combined cycles for an optimised part load operation [J]. Fuel, 2012, 101: 154-160
[83]
Karellas S, Panopoulos K D, Panousis G, Rigas A, Karl J, Kakaras E. An evaluation of substitute natural gas production from different coal gasification processes based on modeling [J]. Energy, 2012, 45: 183-194.
[84]
Lou Ren(楼韧), Ren Xiaoxian(任筱娴), Zhong Yongfang(钟永芳). A discuss on application of isothermal methanation technology in coal to gas [J]. Natural Gas Chemical Industry(天然气化工), 2013, 38: 42-45.
[85]
Jin Yong(金涌), Zhou Yucheng(周禹成), Hu Shanying(胡山鹰). Discussion on development of coal chemical industry using low-carbon concept [J]. CIESC Journal(化工学报), 2012, 63: 3-8.
[86]
Liu Huazhang(刘化章). Catalysis function in energy source conversion [J]. Industrial Catalysis(工业催化), 2011, 19: 1-12.
[87]
van Heek K H. Progress of coal science in the 20th century [J]. Fuel, 2000, 79: 1-26.
[88]
Lin Hualin(蔺华林), Li Kejian(李克健), Zhao Lijun(赵利军). Research progress of coal-based high temperature methanation catalyst for synthetic natural gas [J]. Chemical Industry and Engineering Progress (化工进展), 2011, 30: 1739-1743.
[89]
Rostrup-Nielsen J R, Pedersen K, Sehested J. High temperature methanation sintering and structure sensitivity [J]. Applied Catalysis A: General, 2007, 330: 134-138.
[90]
Mills G A, Steffgen F W. Catalytic methanation [J]. Catalysis Review-Science and Engineering, 1973, 8: 159-210.
[91]
Nahar G A, Madhani S S. Thermodynamics of hydrogen production by the steam reforming of butanol: analysis of inorganic gases and light hydrocarbons [J]. International Journal of Hydrogen Energy, 2010, 35: 98-109.
[92]
Lom W L, Williams A F. Substitute natural gas [M]. NewYork: Wiley, 1976: 167-184.
[93]
Penniine H W, Schehl R R, Haynes W P. Operation of a tube wall methanation reactor//2nd Joint Conference CIC/ACS[C], Montreal, Canada, 1977.
[94]
Seglin L, Geosits R, Franko B R, Gruber G. Survey of methanation chemistry and processes [J]. Advances in Chemistry Series, 1975, 146: 1-30.
[95]
Hu D C, Gao J J, Ping Y, Jia L H, Gunawan P, Zhong Z Y, Xu G W, Gu F N, Su F B. Enhanced investigation of CO methanation over Ni/Al2O3 catalysts for synthetic natural gas production [J]. Industrial & Engineering Chemistry Research, 2012, 51: 4875-4886.
[96]
Harms H, H?hlein B, Skov A. Methanisierung kohlenmonoxidreicher gase beim energie-transport [J]. Chemie Ingenieur Technik, 1980, 52: 504-515.
[97]
Zhu Ruichun(朱瑞春), Gong Weiheng(公维恒), Fan Shaofeng(范少锋). Research on technology of synthetic natural gas from coal [J].Clean Coal Technology(洁净煤技术), 2011, 17: 81-85.
[98]
Eisenlohr K H, Moeller F W, Dry M. Effect of certain reacation parameters on methanation of coal gas to SNG [J]. Advances in Chemistry Series, 1975, 146: 113-122.
[99]
Hohlein B, Menzer R, Range J. High temperature methanation in the long-distance nuclear energy transport system [J]. Applied Catalysis, 1981, 1: 125-139.
[100]
Vannice M A. The catalytic synthesis of hydrocarbons from carbon monoxide and hydrogen [J]. Catalysis Reviews: Science and Engineering, 1976, 14: 153-191.
[101]
Ponec V. Some aspects of the mechanism of methanation and Fischer-Tropsch synthesis [J]. Catalysis Reviews: Science and Engineering, 1978, 18: 151-171.
[102]
Govender A, Ferre D C, Niemantsverdriet J W. A density functional theory study on the effect of zero-point energy corrections on the methanation profile on Fe(100) [J]. ChemPhysChem, 2012, 13: 1591-1596.
[103]
Chen J, Li S L, Xu Q, Tanaka K. Synthesis of open-ended MoS2 nanotubes and the application as the catalyst of methanation [J]. Chemical Communications, 2002, 16: 1722-1723.
[104]
Enger B C, Holmen A. Nickel and Fischer-Tropsch synthesis [J]. Catalysis Reviews: Science and Engineering, 2012, 54: 437-488.
[105]
Rojanapipatkul S, Jongsomjit B. Synthesis of cobalt on cobalt-aluminate via solvothermal method and its catalytic properties for carbon monoxide hydrogenation [J]. Catalysis Communications, 2008, 10: 232-236.
[106]
Tada S, Kikuchi R, Urasaki K, Satokawa S. Effect of reduction pretreatment and support materials on selective CO methanation over supported Ru catalysts [J]. Applied Catalysis A: General, 2011, 404: 149-154.
[107]
Eckle S, Anfang H G, Behm R J. What drives the selectivity for CO methanation in the methanation of CO2-rich reformate gases on supported Ru catalysts? [J]. Applied Catalysis A: General, 2011, 391: 325-333.
[108]
Kamble V S, Londhe V P, Gupta N M, Thampi K R, Gr?tzel M. Studies on the sulfur poisoning of Ru-RuOx/TiO2 catalyst for the adsorption and methanation of carbon monoxide [J]. Journal of Catalysis, 1996, 158: 427-438.
[109]
Barrientos J, Lualdi M, Boutonnet M, J?r?s S. Deactivation of supported nickel catalysts during CO methanation [J]. Applied Catalysis A: General, 2014, 486: 143-149.
[110]
Zhang Jiaying(张加赢), Xin Zhong(辛忠), Meng Xin(孟鑫), Tao Miao(陶淼). Activity and stability of nickel based MCM-41 methanation catalysts for production of synthetic natural gas [J]. CIESC Journal(化工学报), 2014, 65: 160-168.
[111]
Tian D Y, Liu Z H, Li D D, Shi H L, Pan W X, Cheng Y. Bimetallic Ni-Fe total-methanation catalyst for the production of substitute natural gas under high pressure [J]. Fuel, 2013, 104: 224-229.
[112]
Zeng Y, Ma H F, Zhang H T, Ying W Y, Fang D Y. Highly efficient NiAl2O4-free Ni/g-Al2O3 catalysts prepared by solution combustion method for CO methanation [J]. Fuel, 2014, 137: 155-163.for CO methanation in the methanation of CO2-rich reformate gases on supported Ru catalysts? [J]. Applied Catalysis A: General, 2011, 391: 325-333
[113]
Kamble VS, Londhe V P, Gupta N M, Thampi K R, Gr?tzel M. Studies on the sulfur poisoning of Ru-RuOx /TiO2 catalyst for the adsorption and methanation of carbon monoxide [J]. Journal of Catalysis, 1996, 158: 427-438
[114]
Barrientos J, Lualdi M, Boutonnet M, J?r?s S. Deactivation of supported nickel catalysts during CO methanation [J]. Applied Catalysis A: General, 2014, 486: 143-149
[115]
Zhang Jiaying(张加赢), Xin Zhong(辛忠), Meng Xin(孟鑫), Tao Miao(陶淼). Activity and stability of nickel based MCM-41 methanation catalysts for production of synthetic natural gas [J]. CIESC Journal(化工学报), 2014, 65: 160-168
[116]
Tian D Y, Liu Z H, Li D D, Shi H L, Pan W X, Cheng Y. Bimetallic Ni-Fe total-methanation catalyst for the production of substitute natural gas under high pressure [J]. Fuel, 2013, 104: 224-229
[117]
Zeng Y, Ma H F, Zhang H T, Ying W Y, Fang D Y. Highly efficient NiAl2O4-free Ni/c-Al2O3 catalysts prepared by solution combustion method for CO methanation [J]. Fuel, 2014, 137: 155-163
[118]
Munnik P, Velthoen M E Z, de Jongh P E, de Jong K P, Gommes C J. Nanoparticle growth in supported nickel catalysts during methanation reaction—Larger is better [J]. Angewandte Chemie International Edition, 2014, 53: 9493-9497
[119]
Harms H, Hohlein B, Jorn E. High-temp methanation tests run [J]. Oil&Gas Journal, 1980, 14: 120-135
[120]
Liu Zhiguang(刘志光), Gong Huajun(龚华俊), Yu Liming(余黎明). SNG development in China [J]. Coal Chemical Industry(煤化工), 2009, 2: 1-5
[121]
Zhao Liang(赵亮), Chen Yunjie(陈允捷). Development phenomina of foreign methanation progress [J]. Chemical Industry and Engineering Progress (化工进展), 2012, 31: 176-178
[122]
Yang Bolun(杨伯伦), Li Xingxing(李星星), Yi Chunhai(伊春海), Jiang Xuedong(蒋雪冬), Zhang Yong(张勇), Zhou Xiaoqi(周晓奇). Technological progress of synthetic natural gas [J]. Chemical Industry and Engineering Progress (化工进展), 2011, 30: 110-116
[123]
Dai Chen(代陈), Liu Zhiming(刘志铭), Xie Jianrong(谢建榕), Lin Guodong(林国栋), Zhang Hongbin(张鸿斌), A highly efficient Sc2O3-promoted Ni-ZrO2 catalyst for methanation of coal-based syngas to produce synthesis natural gas [J]. Journal of Xiamen University(厦门大学学报), 2013, 52: 650-654
[124]
Zhao Gangwei(赵钢炜), Xiao Yunhan(肖云汉) Wang Yu(王钰). Analysis and Discussion of Process Coal Based Synthetic Natural Gas and the Factors Effecting the Catalysts [J]. Ceramics(陶瓷), 2009, 11: 21-26
[125]
Zhao Lijun(赵利军), Lin Hualin(蔺华林). Methanation catalyst design by virtue of catalytic echanisms and new fields in methanation studies [J]. Shenhua Science and Technology (神华科技), 2011, 9: 87-91
[126]
Liu Y J, Gao J J, Liu Q, Gu F N, Lu X P, Jia L H, Xu G W, Zhong Z Y, Su F B. Preparation of high-surface-area Ni/α-Al2O3 catalysts for improved CO methanation [J]. RSC Advances, 2015, 5: 7539-7546
[127]
Liu Q, Gu F N, Lu X P, Liu Y J, Li H F, Zhong Z Y, Xu G W, Su F B. Enhanced catalytic performances of Ni/Al2O3 catalyst via addition of V2O3 for CO methanation [J]. Applied Catalysis A: General, 2014, 488: 37-47
[128]
Gao J J, Jia C M, Li J, Gu F N, Xu G W, Zhong Z Y, Su F B. Nickel catalysts supported on barium hexaaluminate for enhanced CO methanation [J]. Industrial & Engineering Chemistry Research, 2012, 51: 10345-10353
[129]
Tian Dayong(田大勇), Yang Xia(杨霞), Qin Shaodong(秦绍东), Sun Shouli(孙守理), Sun Qi(孙琦). Preparation of Ni-based catalyst with wide working temperature and its performance for methanation reaction [J]. Industrial Catalysis(工业催化), 2013, 21: 26-29
[130]
Jiang M H, Wang B W, Yao Y Q, Wang H Y, Li Z H, Ma X B, Qin S D, Sun Q, Effect of stepwise sulfidation on a MoO3/CeO2-Al2O3 catalyst for sulfur-resistant methanation [J]. Applied Catalysis A: General, 2014, 469: 89-97
[131]
Jiang M H, Wang B W, Yao Y Q, Li Z H, Ma X B, Qin S D, Sun Q. Effect of sulfidation temperature on CoO-MoO3/γ-Al2O3 catalyst for sulfur-resistant methanation [J]. Catal. Sci. Technol., 2013,3: 2793-2800
[132]
Jiang M H, Wang B W, Yao Y Q, Li Z H, Ma X B, Qin S D, Sun Q. A comparative study of CeO2-Al2O3 support prepared with different methods and its application on MoO3/CeO2-Al2O3 catalyst for sulfur-resistant methanation [J]. Applied Surface Science 2013, 285: 267-277
[133]
Li Z H, Liu J, Wang H Y, Wang E D, Wang B W, Ma X B, Qin S D, Sun Q. Effect of sulfidation temperature on the catalytic behavior of unsupported MoS2 catalysts for synthetic natural gas production from syngas [J]. Journal of Molecular Catalysis A: Chemical 2013, 378: 99-108
[134]
Araki M, Ponec V. Methanation of carbon monoxide on nickel and nickel-copper alloys [J]. Journal of Catalysis, 1976, 44: 439-488
[135]
Schoubye P. Methanation of CO on some Ni catalysts [J]. Journal of Catalysis, 1969, 14: 238-246
[136]
Vannice M A, Garten R L. Metal-support effects on the activity and selectivity of Ni catalysts in CO/H2 synthesis reactions [J]. Journal of Catalysis, 1979, 56: 236-248
[137]
Erekson E J, Sughrue E L, Bartholomew C H. Catalyst degradation in high temperature methanation [J]. Fuel Processing Technology, 1981, 5: 91-101
[138]
Gierlich H H, Fremery M, Skov A, Rostrup-Nielsen J R. Deactivation phenomena of a Ni-based catalyst for high temperature methanation [J]. Studies in Surface Science and Catalysis, 1980, 6: 459-469
[139]
Zhang J, Fatah N, Capela S, Kara Y, Guerrini O, Khodakov A Y. Kinetic investigation of carbon monoxide hydrogenation under realistic conditions of methanation of biomass derived syngas [J]. Fuel, 2013, 111: 845-854
[140]
Hwang S, Lee J, Hong U G, Seo J G, Jung J C, Koh D J, Lim H, Byun C, Song I K, Methane production from carbon monoxide and hydrogen over nickel-alumina xerogel catalyst: Effect of nickel content [J]. Journal of Industrial and Engineering Chemistry, 2011, 17: 154-157
[141]
Bai X B, Wang S, Sun T J, Wang S D. The sintering of Ni/Al2O3 methanation catalyst for substitute natural gas production [J]. Reaction Kinetics, Mechanisms and Catalysis, 2014, 112: 437-451
[142]
Zhang J Y, Xin Z, Meng X, Tao M. Synthesis, characterization and properties of anti-sintering nickel incorporated MCM-41 methanation catalysts, Fuel, 2013, 109: 693-701
[143]
Hu Xianhui(胡贤辉), Wang Xingjun(王兴军), Xu Chao(徐超), Yu Guangsuo(于广锁), Wang Fuchen(王辅臣). Influence of precipitant on the performance of nickel catalyst for methanation [J]. Journal of Fuel Chemistry and Technology(燃料化学学报), 2012, 40: 430-435
[144]
Legras B, Ordomsky V V, Dujardin C, Virginie M, Khodakov A Y. Impact and detailed action of sulfur in syngas on methane synthesis on Ni/γ-Al2O3 catalyst [J]. ACS Catalysis, 2014, 4: 2785-2791
[145]
Czekaj I, Struis R, Wambach J, Biollaz S. Sulphur poisoning of Ni catalysts used in the SNG production from biomass: Computational studies [J]. Catalysis Today, 2011, 176: 429-432
[146]
托普索公司. Coal to gas high temperature methanation process [C]. The 16th national fertilizer and methanol technical annual meeting. China, Nanjing, 2007: 470-472
[147]
Schildhauer T J, Kopyscinski J, Biollaz S M A. Fluidized-bed Methanation: Interaction between kinetics and mass transfer [J]. Industrial & Engineering Chemistry Research, 2011, 50: 2781-2790
[148]
Bartholomew C H. Carbon deposition in steam reforming and methanation [J]. Catalysis Reviews: Science and Engineering, 1982, 24(1): 67-112
[149]
Sehested J. Sintering of nickel steam-reforming catalysts [J]. Journal of Catalysis, 2003, 217:417-426
[150]
Wentrcek P R, Wood B J, Wise H. Role of surface carbon in catalytic methanation [J]. Journal of Catalysis, 1976, 43: 363-366
[151]
Goodman D W, Kelley R D, Madey T E, White J M. Measurement of carbide buildup and removal kinetics on Ni(100) [J]. Journal of Catalysis, 1980, 64: 479-481
[152]
Stone F S. Research perspectives during 40 years of the Journal of Catalysis [J]. Journal of Catalysis, 2003, 216: 2-11
[153]
Wang S, Moon S, Vannice M A. The effect of SMSI (strong metalsupport interaction) behavior on CO adsorption and hydrogenation on Pd catalysts: II. Kinetic behavior in the methanation reaction. Journal of Catalysis, 1981, 71:167-174
[154]
Ojeda M, Nabar R, Nilekar A U, Ishikawa A, Mavrikakis M, Iglesia E. CO activation pathways and the mechanism of Fischer-Tropsch synthesis. Journal of Catalysis, 2010, 272: 287-297
[155]
Cant N W, Bell A T. Studies of carbon monoxide hydrogenation over ruthenium using transient response techniques. Journal of Catalysis, 1982, 73: 257-271
[156]
Liu J, Shen W L, Cui D M, Yu J, Su F B, Xu GW. Syngas methanation for substitute natural gas over Ni-Mg/Al2O3 catalyst in fixed and fluidized bed reactors, Catalysis Communications, 2013, 38: 35-39
[157]
Cui D M, Liu J, Yu J, Yue J R, Su F B, Xu G W. Necessity of moderate metal-support interaction in Ni/Al2O3 for syngas methanation at high temperatures, RSC Advances, 2015, 5: 10187-10196
[158]
Kai T, Furukawa M, Nakazato T, Tsutsui T, Mizuta K. Analysis of fluidization quality of a fluidized bed with staged gas feed for reactions involving gas-volume reduction [J]. AIChE Journal, 2010, 56: 2297-2303
[159]
Kai T, Furukawa M, Nakazato T, Nakajima M. Prevention of defluidization by gas dilution for reactions involving gas-volume reduction [J]. Chemical Engineering Journal, 2011, 166: 1126-1131
[160]
Kai T, Toriyama K, Nishie K, Takahashi T, Nakajima M. Effect of volume decrease on fluidization quality of fluidized catalyst beds [J]. AIChE Journal, 2006, 52: 3210-3215
[161]
Chu Y, Chu B Z, Wei X B, Zhang Q, Wei F. An emulsion phase condensation model to describe the defluidization behavior for reactions involving gas volume reduction [J]. Chemical Engineering Journal, 2012, 198-199: 364-370